
Bipul Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2771954/publications.pdf Version: 2024-02-01

RIDIII SADKAD

#	Article	IF	CITATIONS
1	Selective Oxidation of Propylene to Propylene Oxide over Silver-Supported Tungsten Oxide Nanostructure with Molecular Oxygen. ACS Catalysis, 2014, 4, 2169-2174.	11.2	114
2	Studies of synergy between metal–support interfaces and selective hydrogenation of HMF to DMF in water. Journal of Catalysis, 2016, 340, 248-260.	6.2	101
3	Preparation of the CuCr ₂ O ₄ spinel nanoparticles catalyst for selective oxidation of toluene to benzaldehyde. Green Chemistry, 2014, 16, 2500-2508.	9.0	99
4	MoO3 Nanoclusters Decorated on TiO2 Nanorods for Oxidative dehydrogenation of ethane to ethylene. Applied Catalysis B: Environmental, 2017, 217, 637-649.	20.2	59
5	Room temperature selective oxidation of cyclohexane over Cu-nanoclusters supported on nanocrystalline Cr2O3. Green Chemistry, 2012, 14, 2600.	9.0	56
6	Single-step synthesis of hierarchical B _x CN: a metal-free catalyst for low-temperature oxidative dehydrogenation of propane. Journal of Materials Chemistry A, 2016, 4, 18559-18569.	10.3	54
7	Advantages and limitations of catalytic oxidation with hydrogen peroxide: from bulk chemicals to lab scale process. Catalysis Reviews - Science and Engineering, 2022, 64, 229-285.	12.9	52
8	Cu nanoclusters supported on nanocrystalline SiO ₂ –MnO ₂ : a bifunctional catalyst for the one-step conversion of glycerol to acrylic acid. Chemical Communications, 2014, 50, 9707-9710.	4.1	51
9	Reforming of methane with CO2 over Ni nanoparticle supported on mesoporous ZSM-5. Catalysis Today, 2012, 198, 209-214.	4.4	47
10	Highly nanodispersed Gd-doped Ni/ZSM-5 catalyst for enhanced carbon-resistant dry reforming of methane. Journal of Molecular Catalysis A, 2016, 424, 17-26.	4.8	39
11	Pt nanoparticle supported on nanocrystalline CeO ₂ : highly selective catalyst for upgradation of phenolic derivatives present in bio-oil. Journal of Materials Chemistry A, 2014, 2, 18398-18404.	10.3	32
12	K-Promoted Pt-Hydrotalcite Catalyst for Production of H ₂ by Aqueous Phase Reforming of Glycerol. ACS Sustainable Chemistry and Engineering, 2018, 6, 2122-2131.	6.7	29
13	Preparation of CeO2 nanoparticles supported on 1-D silica nanostructures for room temperature selective oxidation of styrene. RSC Advances, 2014, 4, 5453.	3.6	27
14	Highly selective transfer hydrogenation of α,β-unsaturated carbonyl compounds using Cu-based nanocatalysts. Catalysis Science and Technology, 2017, 7, 2828-2837.	4.1	26
15	Effective vacuum residue upgrading using sacrificial nickel(II) dimethylglyoxime complex in supercritical methanol. Applied Catalysis A: General, 2017, 545, 148-158.	4.3	25
16	Ag and WOx Nanoparticles Embedded in Mesoporous SiO ₂ for Cyclohexane Oxidation. ACS Applied Nano Materials, 2019, 2, 5989-5999.	5.0	25
17	Acid–Base Cooperative Catalysis over Mesoporous Nitrogenâ€Rich Carbon. ChemCatChem, 2014, 6, 3091-3095.	3.7	21
18	Pt nanoparticles with tuneable size supported on nanocrystalline ceria for the low temperature water-gas-shift (WGS) reaction. Journal of Molecular Catalysis A, 2014, 395, 117-123.	4.8	21

BIPUL SARKAR

#	Article	IF	CITATIONS
19	Renewable Aromatics from Tree-Borne Oils over Zeolite Catalysts Promoted by Transition Metals. ACS Applied Materials & Interfaces, 2020, 12, 24756-24766.	8.0	21
20	Converting Lignocellulosic Pentosan-Derived Yeast Single Cell Oil into Aromatics: Biomass to Bio-BTX. ACS Sustainable Chemistry and Engineering, 2019, 7, 13437-13445.	6.7	19
21	A non-catalytic, supercritical methanol route for producing high-yield saturated and aromatic compounds from de-oiled asphaltenes. Journal of Supercritical Fluids, 2017, 120, 140-150.	3.2	16
22	Morphology-controlled synthesis of TiO2 nanostructures for environmental application. Catalysis Communications, 2016, 74, 43-48.	3.3	15
23	CNx stabilized Ni-Ga nanoparticles for CO2 hydrogenation: Role of preparation methods. Catalysis Today, 2020, 343, 48-55.	4.4	15
24	Formation of ilmenite-type CoTiO3 on TiO2 and its performance in oxidative dehydrogenation of cyclohexane with molecular oxygen. Catalysis Communications, 2014, 56, 5-10.	3.3	14
25	Simultaneous breaking and conversion of petroleum emulsions into synthetic crude oil with low impurities. Fuel, 2017, 199, 135-144.	6.4	14
26	Fe-decorated hierarchical molybdenum carbide for direct conversion of CO2 into ethylene: Tailoring activity and stability. Journal of CO2 Utilization, 2021, 50, 101607.	6.8	14
27	Supercritical methanol as an effective medium for producing asphaltenes-free light fraction oil from vacuum residue. Journal of Supercritical Fluids, 2018, 133, 184-194.	3.2	12
28	Synthesis of AgWCN _{<i>x</i>} Nanocomposites for the One‣tep Conversion of Cyclohexene to Adipic Acid and Its Mechanistic Studies. Chemistry - A European Journal, 2017, 23, 16555-16565.	3.3	9
29	Production of renewable aromatics from jatropha oil over multifunctional ZnCo/ZSM-5 catalysts. Renewable Energy, 2021, 179, 2124-2135.	8.9	9
30	Low-temperature selective production of propylene from non-oxidative dehydrogenation of propane over unconventional Zr/ZK-5 catalysts. Fuel Processing Technology, 2022, 235, 107362.	7.2	7
31	Role of Pyridinic Nitrogen on Base Catalyzed Knoevenagel Condensation over Pristine CNx. ChemistrySelect, 2017, 2, 8086-8090.	1.5	6
32	Integration of zeolite@metal–organic framework: a composite catalyst for isopropyl alcohol conversion to aromatics. Materials Today Chemistry, 2022, 24, 100796.	3.5	6
33	Low-Temperature Nonoxidative Dehydrogenation of Propane over Sn-promoted Mo-Y Zeolite: Catalytic performance and nature of the active sites. Fuel, 2022, 323, 124350.	6.4	5
34	Synthesis of sub-nanometric Cu ₂ O catalysts for Pd-free C–C coupling reactions. Reaction Chemistry and Engineering, 2021, 6, 929-936.	3.7	3