Khaled Greish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2771916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today, 2006, 11, 812-818.	3.2	1,633
2	Enhanced Permeability and Retention (EPR) Effect for Anticancer Nanomedicine Drug Targeting. Methods in Molecular Biology, 2010, 624, 25-37.	0.4	650
3	Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines. Journal of Drug Targeting, 2007, 15, 457-464.	2.1	540
4	PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomaterialia, 2016, 43, 14-29.	4.1	296
5	Anticancer nanomedicine and tumor vascular permeability; Where is the missing link?. Journal of Controlled Release, 2012, 164, 265-275.	4.8	275
6	Macromolecular Therapeutics. Clinical Pharmacokinetics, 2003, 42, 1089-1105.	1.6	260
7	Influence of Geometry, Porosity, and Surface Characteristics of Silica Nanoparticles on Acute Toxicity: Their Vasculature Effect and Tolerance Threshold. ACS Nano, 2012, 6, 2289-2301.	7.3	186
8	SMA–doxorubicin, a new polymeric micellar drug for effective targeting to solid tumours. Journal of Controlled Release, 2004, 97, 219-230.	4.8	173
9	In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Research, 2003, 63, 3567-74.	0.4	166
10	Elevating Blood Pressure as a Strategy to Increase Tumor-targeted Delivery of Macromolecular Drug SMANCS: Cases of Advanced Solid Tumors. Japanese Journal of Clinical Oncology, 2009, 39, 756-766.	0.6	156
11	Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. International Journal of Cancer, 2004, 109, 1-8.	2.3	153
12	Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology, 2012, 6, 713-723.	1.6	145
13	Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. International Journal of Nanomedicine, 2014, 9, 2539.	3.3	143
14	Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Advanced Drug Delivery Reviews, 2019, 144, 112-132.	6.6	140
15	The EPR Effect and Polymeric Drugs: AÂParadigm Shift for Cancer Chemotherapy in the 21st Century. Advances in Polymer Science, 2005, , 103-121.	0.4	135
16	Copoly(styrene-maleic acid)â^'Pirarubicin Micelles:  High Tumor-Targeting Efficiency with Little Toxicity1. Bioconjugate Chemistry, 2005, 16, 230-236.	1.8	100
17	Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation. Journal of Drug Targeting, 2007, 15, 496-506.	2.1	99
18	High-loading nanosized micelles of copoly(styrene–maleic acid)–zinc protoporphyrin for targeted delivery of a potent heme oxygenase inhibitor. Biomaterials, 2007, 28, 1871-1881.	5.7	91

#	Article	IF	CITATIONS
19	Charge affects the oral toxicity of poly(amidoamine) dendrimers. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 330-334.	2.0	87
20	Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: a novel approach to overcome resistance against imatinib. Blood, 2008, 111, 2200-2210.	0.6	85
21	Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: are we there yet?. Drug Discovery Today: Technologies, 2012, 9, e161-e166.	4.0	73
22	Water-Soluble Polymer Conjugates of ZnPP for Photodynamic Tumor Therapy. Bioconjugate Chemistry, 2007, 18, 494-499.	1.8	72
23	Controlled Delivery of Nitric Oxide for Cancer Therapy. Pharmaceutical Nanotechnology, 2019, 7, 279-303.	0.6	69
24	Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer: From molecular definition to controlled gene expression. Journal of Controlled Release, 2009, 140, 256-261.	4.8	68
25	Gold nanorod mediated plasmonic photothermal therapy: A tool to enhance macromolecular delivery. International Journal of Pharmaceutics, 2011, 415, 315-318.	2.6	62
26	Oxystress inducing antitumor therapeutics <i>via</i> tumorâ€ŧargeted delivery of PEG onjugated <scp>D</scp> â€amino acid oxidase. International Journal of Cancer, 2008, 122, 1135-1144.	2.3	57
27	Comparison of Active and Passive Targeting of Docetaxel for Prostate Cancer Therapy by HPMA Copolymer–RGDfK Conjugates. Molecular Pharmaceutics, 2011, 8, 1090-1099.	2.3	56
28	Silkâ€elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors. Journal of Gene Medicine, 2010, 12, 572-579.	1.4	54
29	Novel imidazole derivatives as heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2) inhibitors and their cytotoxic activity in human-derived cancer cell lines. European Journal of Medicinal Chemistry, 2015, 96, 162-172.	2.6	53
30	Nanomedicine: is it lost in translation?. Therapeutic Delivery, 2018, 9, 269-285.	1.2	52
31	Silk-Elastinlike Protein Polymer Hydrogels for Localized Adenoviral Gene Therapy of Head and Neck Tumors. Biomacromolecules, 2009, 10, 2183-2188.	2.6	51
32	Screening and Molecular Docking of Novel Benzothiazole Derivatives as Potential Antimicrobial Agents. Antibiotics, 2020, 9, 221.	1.5	50
33	<i>In vitro</i> and <i>in vivo</i> evaluation of tumor targeting styreneâ€maleic acid copolymerâ€pirarubicin micelles: Survival improvement and inhibition of liver metastases. Cancer Science, 2010, 101, 1866-1874.	1.7	49
34	Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. Journal of Controlled Release, 2018, 291, 184-195.	4.8	49
35	Polymeric nano-micelles: versatile platform for targeted delivery in cancer. Therapeutic Delivery, 2014, 5, 1101-1121.	1.2	47
36	Synthesis and therapeutic effect of styrene–maleic acid copolymer onjugated pirarubicin. Cancer Science, 2015, 106, 270-278.	1.7	47

#	Article	IF	CITATIONS
37	Silk-Elastin-like Hydrogel Improves the Safety of Adenovirus-Mediated Gene-Directed Enzymeâ^'Prodrug Therapy. Molecular Pharmaceutics, 2010, 7, 1050-1056.	2.3	46
38	Sildenafil citrate improves the delivery and anticancer activity of doxorubicin formulations in a mouse model of breast cancer. Journal of Drug Targeting, 2018, 26, 610-615.	2.1	46
39	The Effect of Silver Nanoparticles on Learning, Memory and Social Interaction in BALB/C Mice. International Journal of Environmental Research and Public Health, 2019, 16, 148.	1.2	45
40	Identification of heat shock protein 32 (Hsp32) as a novel survival factor and therapeutic target in neoplastic mast cells. Blood, 2007, 110, 661-669.	0.6	43
41	Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin. International Journal of Pharmaceutics, 2011, 420, 111-117.	2.6	41
42	Styrene Maleic Acid-Pirarubicin Disrupts Tumor Microcirculation and Enhances the Permeability of Colorectal Liver Metastases. Journal of Vascular Research, 2009, 46, 218-228.	0.6	40
43	Anticancer and antiangiogenic activity of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer therapy. Journal of Controlled Release, 2011, 151, 263-270.	4.8	40
44	In Vivo Methods of Nanotoxicology. Methods in Molecular Biology, 2012, 926, 235-253.	0.4	38
45	Comparison of silk-elastinlike protein polymer hydrogel and poloxamer in matrix-mediated gene delivery. International Journal of Pharmaceutics, 2012, 427, 97-104.	2.6	38
46	Novel Structural Insight into Inhibitors of Heme Oxygenase-1 (HO-1) by New Imidazole-Based Compounds: Biochemical and In Vitro Anticancer Activity Evaluation. Molecules, 2018, 23, 1209.	1.7	38
47	HSP32 (HO-1) inhibitor, copoly(styrene-maleic acid)-zinc protoporphyrin IX, a water-soluble micelle as anticancer agent: In vitro and in vivo anticancer effect. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 540-547.	2.0	34
48	pH-sensitive polymeric cisplatin-ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect. Colloids and Surfaces B: Biointerfaces, 2016, 138, 128-137.	2.5	34
49	Hypoxia Responsive Drug Delivery Systems in Tumor Therapy. Current Pharmaceutical Design, 2016, 22, 2808-2820.	0.9	34
50	Nanotechnology in Insulin Delivery for Management of Diabetes. Pharmaceutical Nanotechnology, 2019, 7, 113-128.	0.6	33
51	Nitric oxide-releasing nanoparticles improve doxorubicin anticancer activity. International Journal of Nanomedicine, 2018, Volume 13, 7771-7787.	3.3	28
52	Curcumin–Copper Complex Nanoparticles for the Management of Triple-Negative Breast Cancer. Nanomaterials, 2018, 8, 884.	1.9	28
53	SMA–copolymer conjugate of AHPP: A polymeric inhibitor of xanthine oxidase with potential antihypertensive effect. Journal of Controlled Release, 2009, 135, 211-217.	4.8	27
54	The Promise of Nanotechnology in Personalized Medicine. Journal of Personalized Medicine, 2022, 12, 673.	1.1	27

#	Article	IF	CITATIONS
55	Evidence of Oral Translocation of Anionic G6.5 Dendrimers in Mice. Molecular Pharmaceutics, 2013, 10, 988-998.	2.3	26
56	Evaluation of the effect of SMA–pirarubicin micelles on colorectal cancer liver metastases and of hyperbaric oxygen in CBA mice. Journal of Drug Targeting, 2007, 15, 487-495.	2.1	25
57	Protective Effect of Spirulina platensis Extract against Dextran-Sulfate-Sodium-Induced Ulcerative Colitis in Rats. Nutrients, 2019, 11, 2309.	1.7	23
58	A combination of tyrosine kinase inhibitors, crizotinib and dasatinib for the treatment of glioblastoma multiforme. Oncotarget, 2015, 6, 37948-37964.	0.8	22
59	Curcumin-derivative nanomicelles for the treatment of triple negative breast cancer. Journal of Drug Targeting, 2013, 21, 675-683.	2.1	21
60	Heme Oxygenase Modulation Drives Ferroptosis in TNBC Cells. International Journal of Molecular Sciences, 2022, 23, 5709.	1.8	21
61	Targeting of heat-shock protein 32/heme oxygenase-1 in canine mastocytoma cells is associated with reduced growth and induction of apoptosis. Experimental Hematology, 2008, 36, 1461-1470.	0.2	19
62	New Arylethanolimidazole Derivatives as HO-1 Inhibitors with Cytotoxicity against MCF-7 Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 1923.	1.8	19
63	Micellar formulations of Crizotinib and Dasatinib in the management of glioblastoma multiforme. Journal of Drug Targeting, 2018, 26, 692-708.	2.1	16
64	The Potential Role of Sildenafil in Cancer Management through EPR Augmentation. Journal of Personalized Medicine, 2021, 11, 585.	1.1	16
65	Styrene maleic acid micelles as a nanocarrier system for oral anticancer drug delivery – dual uptake through enterocytes and M-cells. International Journal of Nanomedicine, 2015, 10, 4653.	3.3	15
66	Raloxifene nanomicelles reduce the growth of castrate-resistant prostate cancer. Journal of Drug Targeting, 2016, 24, 441-449.	2.1	15
67	Oral Insulin Delivery Using Poly (Styrene Co-Maleic Acid) Micelles in a Diabetic Mouse Model. Pharmaceutics, 2020, 12, 1026.	2.0	15
68	Enhanced Anticancer Activity of Nanoformulation of Dasatinib against Triple-Negative Breast Cancer. Journal of Personalized Medicine, 2021, 11, 559.	1,1	15
69	A Novel Role for Raloxifene Nanomicelles in Management of Castrate Resistant Prostate Cancer. BioMed Research International, 2014, 2014, 1-14.	0.9	14
70	Synthesis, in vitro and in silico studies of HO-1 inducers and lung antifibrotic agents. Future Medicinal Chemistry, 2019, 11, 1523-1536.	1,1	13
71	Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. International Journal of Molecular Sciences, 2022, 23, 1853.	1.8	13
72	Drug repurposing strategies and key challenges for COVID-19 management. Journal of Drug Targeting, 2022, 30, 413-429.	2.1	13

#	Article	IF	CITATIONS
73	Effect of styrene maleic acid WIN55,212-2 micelles on neuropathic pain in a rat model. Journal of Drug Targeting, 2015, 23, 353-359.	2.1	12
74	Current Update on the Role of Enhanced Permeability and Retention Effect in Cancer Nanomedicine. , 2017, , 62-109.		12
75	Raloxifene nano-micelles effect on triple-negative breast cancer is mediated through estrogen receptor-β and epidermal growth factor receptor. Journal of Drug Targeting, 2019, 27, 903-916.	2.1	12
76	Styrene maleic acid-encapsulated paclitaxel micelles: antitumor activity and toxicity studies following oral administration in a murine orthotopic colon cancer model. International Journal of Nanomedicine, 2016, Volume 11, 3979-3991.	3.3	11
77	Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer. International Journal of Nanomedicine, 2017, Volume 12, 7225-7237.	3.3	11
78	A combination of sorafenib and nilotinib reduces the growth of castrate-resistant prostate cancer. International Journal of Nanomedicine, 2016, 11, 179.	3.3	10
79	The effect of adjuvant therapy with TNF-α on animal model of triple-negative breast cancer. Therapeutic Delivery, 2018, 9, 333-342.	1.2	10
80	Enhanced Permeability and Retention (EPR) Effect and Tumor-Selective Delivery of Anticancer Drugs. , 2006, , 37-52.		9
81	Styrene maleic acid encapsulated raloxifene micelles for management of inflammatory bowel disease. Clinical and Translational Medicine, 2017, 6, 28.	1.7	9
82	Novel Heme Oxygenase-1 (HO-1) Inducers Based on Dimethyl Fumarate Structure. International Journal of Molecular Sciences, 2020, 21, 9541.	1.8	9
83	The Influence of Drug Loading on Caveolin-1 Mediated Intracellular Internalization of Doxorubicin Nanomicelles in vitro. Journal of Nanomedicine & Nanotechnology, 2014, 05, .	1.1	9
84	Encapsulation of tDodSNO generates a photoactivated nitric oxide releasing nanoparticle for localized control of vasodilation and vascular hyperpermeability. Free Radical Biology and Medicine, 2019, 130, 297-305.	1.3	8
85	The Use of Styrene Maleic Acid Nanomicelles Encapsulating the Synthetic Cannabinoid Analog WIN55,212-2 for the Treatment of Cancer. Anticancer Research, 2015, 35, 4707-12.	0.5	7
86	Safety and Immunogenicity of COVID-19 BBIBP-CorV Vaccine in Children 3–12 Years Old. Vaccines, 2022, 10, 586.	2.1	7
87	Data characterizing the biophysical and nitric oxide release properties of the tDodSNO – Styrene maleic anhydride nanoparticle SMA-tDodSNO. Data in Brief, 2018, 21, 1771-1775.	O.5	6
88	Inhibition of aquaporins as a potential adjunct to breast cancer cryotherapy. Oncology Letters, 2021, 21, 458.	0.8	6
89	Potential Health Benefits of a Pomegranate Extract, Rich in Phenolic Compounds, in Intestinal Inflammation. Current Nutrition and Food Science, 2021, 17, 833-843.	0.3	6
90	SMANCS dynamic therapy for various advanced solid tumors and promising clinical effects: enhanced drug delivery by hydrodynamic modulation with vascular mediators, particularly angiotensin II, during arterial infusion. Drug Delivery System, 2007, 22, 510-521.	0.0	6

#	Article	IF	CITATIONS
91	Recent Update on the Alzheimer's Disease Progression, Diagnosis and Treatment Approaches. Current Drug Targets, 2022, 23, 978-1001.	1.0	5
92	Prospects of Nanocarriers for Oral Delivery of Bioactives Using Targeting Strategies. Current Pharmaceutical Biotechnology, 2016, 17, 683-699.	0.9	3
93	The Cooperative Anticancer Effect of Dual Styrenemaleic Acid Nano- Miceller System against Pancreatic Cancer. Journal of Nanomedicine & Nanotechnology, 0, s4, .	1.1	3
94	Novel Tyrosine Kinase Inhibitors to Target Chronic Myeloid Leukemia. Molecules, 2022, 27, 3220.	1.7	3
95	Styrene maleic acid copolymer–pirarubicin induces tumor-selective oxidative stress and decreases tumor hypoxia as possible treatment of colorectal cancer liver metastases. Surgery, 2015, 158, 236-247.	1.0	2
96	Polymeric Micelles in Management of Lung Cancer. , 2019, , 193-216.		2
97	Tumor Vasculature, EPR Effect, and Anticancer Nanomedicine: Connecting the Dots. , 2013, , 207-239.		2
98	A multivariate statistical analysis of the effects of styrene maleic acid encapsulated RL71 in a xenograft model of triple negative breast cancer. Journal of Biological Methods, 2019, 6, e121.	1.0	2
99	From Far West to East: Joining the Molecular Architecture of Imidazole-like Ligands in HO-1 Complexes. Pharmaceuticals, 2021, 14, 1289.	1.7	2
100	Enhanced Vascular Permeability in Solid Tumors: A Promise for Anticancer Nanomedicine. Cancer Metastasis - Biology and Treatment, 2013, , 81-118.	0.1	1
101	Encapsulation of tDodSNO generates a nitric oxide releasing nanoparticle. Free Radical Biology and Medicine, 2018, 128, S117.	1.3	1
102	The Heme Oxygenase-1-Targeting Compound PEG-ZnPP Inhibits Growth of Imatinib-Resistant BCR/ABL-Transformed Cells Blood, 2004, 104, 1986-1986.	0.6	1
103	Heme Oxygenase-1 (HO-1): A Novel KIT D816V-Dependent Target in Neoplastic Human Mast Cells (HMC-1) Blood, 2005, 106, 3521-3521.	0.6	1
104	Heme Oxygenase-1 (HO-1)/Heat Shock Protein 32 (Hsp32) as a Novel Survival Factor and Target in AML Blood, 2006, 108, 1901-1901.	0.6	1
105	Combination drug delivery approaches for cancer therapy. , 2022, , 213-237.		1
106	Selective Targeting of Breast Cancer by Tafuramycin A Using SMA-Nanoassemblies. Molecules, 2021, 26, 3532.	1.7	0
107	Targeting of Heat Shock Protein 32 (Hsp32) in Neoplastic Cells by Styrene Maleic Acid Zinc Protoporphyrin (SMA-ZnPP) Is Associated with Reduced Growth and Induction of Apoptosis Blood, 2006, 108, 4323-4323.	0.6	0
108	The Journey of an Outstanding Scientific Mind: Prof Hiroshi Maeda (1938–2021). Journal of Personalized Medicine, 2021, 11, 1362.	1.1	0