
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2771829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. Journal of Materials Chemistry, 2011, 21, 4743-4755.	6.7	440
2	Prussian Blue Analogs for Rechargeable Batteries. IScience, 2018, 3, 110-133.	1.9	327
3	Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 575, 246-256.	2.8	233
4	Superior catalytic activity derived from a two-dimensional Ti ₃ C ₂ precursor towards the hydrogen storage reaction of magnesium hydride. Chemical Communications, 2016, 52, 705-708.	2.2	220
5	High performance amorphous-Si@SiO /C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. Journal of Power Sources, 2014, 256, 190-199.	4.0	208
6	Low oordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2019, 58, 12540-12544.	7.2	208
7	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
8	Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy and Environmental Science, 2021, 14, 2302-2313.	15.6	186
9	Enhanced hydrogen storage properties of MgH 2 catalyzed with carbon-supported nanocrystalline TiO 2. Journal of Power Sources, 2018, 398, 183-192.	4.0	176
10	A Study of the Structural and Electrochemical Properties of La[sub 0.7]Mg[sub 0.3](Ni[sub) Tj ETQq0 0 0 rgBT 2003, 150, A565.	/Overlock 1 1.3	.0 Tf 50 387 164
11	Porous anatase TiO ₂ constructed from a metal–organic framework for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 12571.	5.2	153
12	An investigation on the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x (x=3.15–3.80) hydrogen storage electrode alloys. Journal of Alloys and Compounds, 2003, 351, 228-234.	2.8	146
13	A Novel Strategy to Suppress Capacity and Voltage Fading of Li―and Mnâ€Rich Layered Oxide Cathode Material for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1601066.	10.2	141
14	A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium-ion batteries. Journal of Power Sources, 2013, 239, 466-474.	4.0	139
15	Co/CoP Heterojunction on Hierarchically Ordered Porous Carbon as a Highly Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Advanced Energy Materials, 2021, 11, 2102134.	10.2	138
16	A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures. Nature Communications, 2014, 5, 3519.	5.8	136
17	Interface Engineering of Air Electrocatalysts for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2021, 11, 2002762.	10.2	129
18	Li- and Mn-rich layered oxide cathode materials for lithium-ion batteries: a review from fundamentals to research progress and applications. Molecular Systems Design and Engineering, 2018, 3, 748-803.	1.7	127

#	Article	IF	CITATIONS
19	<i>In situ</i> formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH ₂ . Journal of Materials Chemistry A, 2019, 7, 14244-14252.	5.2	114
20	Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH ₂ . Journal of Materials Chemistry A, 2018, 6, 16177-16185.	5.2	113
21	Valleytronics in thermoelectric materials. Npj Quantum Materials, 2018, 3, .	1.8	104
22	Conversionâ€Alloying Anode Materials for Sodium Ion Batteries. Small, 2021, 17, e2101137.	5.2	102
23	Lanthanide Contraction as a Design Factor for Highâ€Performance Halfâ€Heusler Thermoelectric Materials. Advanced Materials, 2018, 30, e1800881.	11.1	101
24	Cycling durability and degradation behavior of La–Mg–Ni–Co-type metal hydride electrodes. Journal of Alloys and Compounds, 2005, 395, 291-299.	2.8	100
25	Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nature Communications, 2021, 12, 119.	5.8	93
26	Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. Journal of Materials Chemistry A, 2014, 2, 7912.	5.2	89
27	Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2. Chemical Engineering Journal, 2021, 406, 126831.	6.6	89
28	On the Durability of Iridiumâ€Based Electrocatalysts toward the Oxygen Evolution Reaction under Acid Environment. Advanced Functional Materials, 2022, 32, 2108465.	7.8	88
29	Implanting Single Zn Atoms Coupled with Metallic Co Nanoparticles into Porous Carbon Nanosheets Grafted with Carbon Nanotubes for Highâ€Performance Lithiumâ€ S ulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	85
30	Hexagonal Boron Nitride as a Multifunctional Support for Engineering Efficient Electrocatalysts toward the Oxygen Reduction Reaction. Nano Letters, 2020, 20, 6807-6814.	4.5	82
31	Monoclinic Phase Na ₃ Fe ₂ (PO ₄) ₃ : Synthesis, Structure, and Electrochemical Performance as Cathode Material in Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2017, 5, 1306-1314.	3.2	81
32	A novel catalyst precursor K ₂ TiF ₆ with remarkable synergetic effects of K, Ti and F together on reversible hydrogen storage of NaAlH ₄ . Chemical Communications, 2011, 47, 1740-1742.	2.2	78
33	Remarkably improved hydrogen storage properties of NaAlH4 doped with 2D titanium carbide. Journal of Power Sources, 2016, 327, 519-525.	4.0	78
34	A novel strategy to significantly enhance the initial voltage and suppress voltage fading of a Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3610-3624.	5.2	78
35	A novel solid-solution MXene (Ti0.5V0.5)3C2 with high catalytic activity for hydrogen storage in MgH2. Materialia, 2018, 1, 114-120.	1.3	78
36	Amylose-Derived Macrohollow Core and Microporous Shell Carbon Spheres as Sulfur Host for Superior Lithium–Sulfur Battery Cathodes. ACS Applied Materials & Interfaces, 2017, 9, 10717-10729.	4.0	77

#	Article	IF	CITATIONS
37	Lattice onfined Ir Clusters on Pd Nanosheets with Charge Redistribution for the Hydrogen Oxidation Reaction under Alkaline Conditions. Advanced Materials, 2021, 33, e2105400.	11.1	76
38	Improved Hydrogen Storage Properties of LiBH ₄ Destabilized by in Situ Formation of MgH ₂ and LaH ₃ . Journal of Physical Chemistry C, 2012, 116, 1588-1595.	1.5	74
39	Manipulating the Coordination Chemistry of RuN(O)C Moieties for Fast Alkaline Hydrogen Evolution Kinetics. Advanced Functional Materials, 2021, 31, 2100698.	7.8	74
40	A novel complex oxide TiVO3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2018, 43, 23327-23335.	3.8	73
41	Development of Catalystâ€Enhanced Sodium Alanate as an Advanced Hydrogenâ€Storage Material for Mobile Applications. Energy Technology, 2018, 6, 487-500.	1.8	70
42	Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2. Nano Research, 2021, 14, 148-156.	5.8	68
43	Chemical vapor deposition prepared bi-morphological carbon-coated Fe3O4 composites as anode materials for lithium-ion batteries. Journal of Power Sources, 2015, 282, 257-264.	4.0	65
44	Improved hydrogen storage kinetics of the Li–Mg–N–H system by addition of Mg(BH ₄) ₂ . Dalton Transactions, 2013, 42, 3802-3811.	1.6	64
45	Structural Engineering in Graphiteâ€Based Metalâ€Ion Batteries. Advanced Functional Materials, 2022, 32, 2107277.	7.8	59
46	Mechanisms for the enhanced hydrogen desorption performance of the TiF4-catalyzed Na2LiAlH6 used for hydrogen storage. Energy and Environmental Science, 2010, 3, 645.	15.6	58
47	Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications. Chemical Record, 2016, 16, 189-204.	2.9	58
48	Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-based cathodes. Journal of Materials Chemistry A, 2018, 6, 8947-8954.	5.2	55
49	Nonâ€Platinum Group Metal Electrocatalysts toward Efficient Hydrogen Oxidation Reaction. Advanced Functional Materials, 2021, 31, 2010633.	7.8	54
50	Highly Stable Cycling of Amorphous Li ₂ CO ₃ -Coated α-Fe ₂ O ₃ Nanocrystallines Prepared via a New Mechanochemical Strategy for Li-Ion Batteries. Advanced Functional Materials, 2017, 27, 1605011.	7.8	53
51	Chemical Preinsertion of Lithium: An Approach to Improve the Intrinsic Capacity Retention of Bulk Si Anodes for Li-ion Batteries. Journal of Physical Chemistry Letters, 2012, 3, 3555-3558.	2.1	52
52	A hybrid Si@FeSi _y /SiO _x anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis. Journal of Materials Chemistry A, 2015, 3, 10767-10776.	5.2	50
53	Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydrogenation/hydrogenation. Nano Research, 2015, 8, 533-545.	5.8	49
54	A New Strategy to Effectively Suppress the Initial Capacity Fading of Iron Oxides by Reacting with LiBH ₄ . Advanced Functional Materials, 2017, 27, 1700342.	7.8	49

#	Article	IF	CITATIONS
55	Understanding the role of K in the significantly improved hydrogen storage properties of a KOH-doped Li–Mg–N–H system. Journal of Materials Chemistry A, 2013, 1, 5031.	5.2	48
56	Achieving ambient temperature hydrogen storage in ultrafine nanocrystalline TiO ₂ @C-doped NaAlH ₄ . Journal of Materials Chemistry A, 2016, 4, 1087-1095.	5.2	48
57	Energetic Aqueous Batteries. Advanced Energy Materials, 2022, 12, .	10.2	48
58	Bi-structural fibers of carbon nanotube coated with nitrogen/oxygen dual-doped porous carbon layer as superior sulfur host for lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 797, 1205-1215.	2.8	47
59	Incorporation of Ammonia Borane Groups in the Lithium Borohydride Structure Enables Ultrafast Lithium Ion Conductivity at Room Temperature for Solid-State Batteries. Chemistry of Materials, 2020, 32, 671-678.	3.2	47
60	Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2017, 42, 4244-4251.	3.8	45
61	Dispersion-strengthened microparticle silicon composite with high anti-pulverization capability for Li-ion batteries. Energy Storage Materials, 2018, 14, 279-288.	9.5	45
62	A mechanochemical synthesis of submicron-sized Li ₂ S and a mesoporous Li ₂ S/C hybrid for high performance lithium/sulfur battery cathodes. Journal of Materials Chemistry A, 2017, 5, 6471-6482.	5.2	44
63	In Situ Encapsulation of the Nanoscale Er ₂ O ₃ Phase To Drastically Suppress Voltage Fading and Capacity Degradation of a Li- and Mn-Rich Layered Oxide Cathode for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 33863-33875.	4.0	44
64	Superior long-term cyclability of a nanocrystalline NiO anode enabled by a mechanochemical reaction-induced amorphous protective layer for Li-ion batteries. Journal of Power Sources, 2018, 397, 134-142.	4.0	44
65	Singleâ€Atom Electrocatalysts for Multiâ€Electron Reduction of CO ₂ . Small, 2021, 17, e2101443.	5.2	44
66	A Unique Nanoflakeâ€Shape Bimetallic Ti–Nb Oxide of Superior Catalytic Effect for Hydrogen Storage of MgH ₂ . Small, 2022, 18, e2107013.	5.2	44
67	Amorphous Dual‣ayer Coating: Enabling High Liâ€ŀon Conductivity of Nonâ€Sintered Garnetâ€Type Solid Electrolyte. Advanced Functional Materials, 2021, 31, 2009692.	7.8	42
68	Mesoporous Fe ₂ O ₃ flakes of high aspect ratio encased within thin carbon skeleton for superior lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 14178-14187.	5.2	40
69	Facile Synthesis and Superior Catalytic Activity of Nano-TiN@N–C for Hydrogen Storage in NaAlH ₄ . ACS Applied Materials & Interfaces, 2018, 10, 15767-15777.	4.0	40
70	Multifunctional bayberry-like composites consisting of CoFe encapsulated by carbon nanotubes for overall water splitting and zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 21741-21749.	5.2	40
71	Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li–S Batteries. Nano-Micro Letters, 2021, 13, 151.	14.4	40
72	Sulfur Doping Triggering Enhanced Pt–N Coordination in Graphitic Carbon Nitride-Supported Pt Electrocatalysts toward Efficient Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 7406-7414.	5.5	40

#	Article	IF	CITATIONS
73	Synthesis, Structure Transformation, and Electrochemical Properties of Li ₂ MgSi as a Novel Anode for Liâ€lon Batteries. Advanced Functional Materials, 2014, 24, 3944-3952.	7.8	39
74	In situ formation of lithium fast-ion conductors and improved hydrogen desorption properties of the LiNH2–MgH2 system with the addition of lithium halides. Journal of Materials Chemistry A, 2014, 2, 3155.	5.2	39
75	TiO2 decorated porous carbonaceous network structures offer confinement, catalysis and thermal conductivity for effective hydrogen storage of LiBH4. Chemical Engineering Journal, 2021, 407, 127156.	6.6	39
76	Homogeneous Na Deposition Enabling Highâ€Energy Naâ€Metal Batteries. Advanced Functional Materials, 2022, 32, 2110280.	7.8	38
77	Hydrogen storage properties and mechanisms of the Mg(BH4)2–NaAlH4 system. International Journal of Hydrogen Energy, 2012, 37, 17137-17145.	3.8	37
78	Superior Kinetic and Cyclic Performance of a 2D Titanium Carbide Incorporated 2LiH + MgB ₂ Composite toward Highly Reversible Hydrogen Storage. ACS Applied Energy Materials, 2019, 2, 4853-4864.	2.5	37
79	Triggering highly stable catalytic activity of metallic titanium for hydrogen storage in NaAlH ₄ by preparing ultrafine nanoparticles. Journal of Materials Chemistry A, 2019, 7, 4651-4659.	5.2	37
80	LiBH ₄ Nanoconfined in Porous Hollow Carbon Nanospheres with High Loading, Low Dehydrogenation Temperature, Superior Kinetics, and Favorable Reversibility. ACS Applied Energy Materials, 2020, 3, 3928-3938.	2.5	36
81	New Insights into the Effects of Zr Substitution and Carbon Additive on Li _{3–<i>x</i>} Er _{1–<i>x</i>} Zr _{<i>x</i>} Cl ₆ Halide Solid Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 8095-8105.	4.0	36
82	Ca(BH4)2–LiBH4–MgH2: a novel ternary hydrogen storage system with superior long-term cycling performance. Journal of Materials Chemistry A, 2013, 1, 12285.	5.2	35
83	Improved hydrogen storage performance of Ca(BH4)2: a synergetic effect of porous morphology and in situ formed TiO2. Energy and Environmental Science, 2013, 6, 847.	15.6	35
84	An ammonia-stabilized mixed-cation borohydride: synthesis, structure and thermal decomposition behavior. Physical Chemistry Chemical Physics, 2014, 16, 135-143.	1.3	35
85	Linking particle size to improved electrochemical performance of SiO anodes for Li-ion batteries. RSC Advances, 2017, 7, 2273-2280.	1.7	34
86	Reaction-Ball-Milling-Driven Surface Coating Strategy to Suppress Pulverization of Microparticle Si Anodes. ACS Applied Materials & Interfaces, 2018, 10, 20591-20598.	4.0	34
87	Higher Than 90% Initial Coulombic Efficiency with Staghornâ€Coralâ€Like 3D Porous LiFeO _{2â^'} <i>_x</i> as Anode Materials for Liâ€Ion Batteries. Advanced Materials, 2020, 32, e1908285.	11.1	34
88	High-loading, ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres for fast (de)hydrogenation kinetics of MgH2. Journal of Magnesium and Alloys, 2022, 10, 3354-3366.	5.5	34
89	A Unique Doubleâ€Layered Carbon Nanobowlâ€Confined Lithium Borohydride for Highly Reversible Hydrogen Storage. Small, 2020, 16, e2001963.	5.2	33
90	Si/Ti3SiC2 composite anode with enhanced elastic modulus and high electronic conductivity for lithium-ion batteries. Journal of Power Sources, 2019, 431, 55-62.	4.0	32

#	Article	IF	CITATIONS
91	Na ₂ Fe(SO ₄) ₂ : an anhydrous 3.6ÂV, low-cost and good-safety cathode for a rechargeable sodium-ion battery. Journal of Materials Chemistry A, 2019, 7, 13197-13204.	5.2	32
92	A Novel Multielement, Multiphase, and Bâ€Containing SiO <i>_x</i> Composite as a Stable Anode Material for Liâ€lon Batteries. Advanced Materials Interfaces, 2019, 6, 1801631.	1.9	32
93	Recent Development of Lithium Borohydrideâ€Based Materials for Hydrogen Storage. Advanced Energy and Sustainability Research, 2021, 2, 2100073.	2.8	31
94	Atomic-Level Modulation of the Interface Chemistry of Platinum–Nickel Oxide toward Enhanced Hydrogen Electrocatalysis Kinetics. Nano Letters, 2021, 21, 4845-4852.	4.5	31
95	Effects of triphenyl phosphate on the hydrogen storage performance of the Mg(NH2)2–2LiH system. Journal of Materials Chemistry, 2009, 19, 2141.	6.7	30
96	Significantly improved kinetics, reversibility and cycling stability for hydrogen storage in NaAlH ₄ with the Ti-incorporated metal organic framework MIL-125(Ti). Journal of Materials Chemistry A, 2014, 2, 1847-1854.	5.2	30
97	Tuning Li 2 MO 3 phase abundance and suppressing migration of transition metal ions to improve the overall performance of Li- and Mn-rich layered oxide cathode. Journal of Power Sources, 2018, 380, 1-11.	4.0	30
98	High-temperature failure behaviour and mechanism of K-based additives in Li–Mg–N–H hydrogen storage systems. Journal of Materials Chemistry A, 2014, 2, 7345-7353.	5.2	29
99	Enabling Full Conversion Reaction with High Reversibility to Approach Theoretical Capacity for Sodium Storage. Advanced Functional Materials, 2019, 29, 1906680.	7.8	29
100	Insight into the synergistic effect mechanism between the Li2MO3 phase and the LiMO2 phase (M = Ni,) Tj	ETQq0 0 2.6	0 rgBT /Overlo
101	Intercalation Pseudocapacitance Boosting Ultrafast Sodium Storage in Prussian Blue Analogs. ChemSusChem, 2019, 12, 2415-2420.	3.6	28
102	Synthesis process and catalytic activity of <scp> Nb ₂ O ₅ </scp> hollow spheres for reversible hydrogen storage of <scp> MgH ₂ </scp> . International Journal of Energy Research, 2021, 45, 3129-3141.	2.2	28
103	A Novel Perovskite Electron–Ion Conductive Coating to Simultaneously Enhance Cycling Stability and Rate Capability of Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ Cathode Material for Lithiumâ€ion Batteries, Small, 2021, 17, e2008132.	5.2	28
104	Hydrogen storage properties and mechanisms of Mg(BH4)2â‹2NH3–xMgH2 combination systems. Journal of Alloys and Compounds, 2014, 585, 674-680.	2.8	27
105	Towards the endothermic dehydrogenation of nanoconfined magnesium borohydride ammoniate. Journal of Materials Chemistry A, 2015, 3, 11057-11065.	5.2	27
106	An eggshell-structured N-doped silicon composite anode with high anti-pulverization and favorable electronic conductivity. Journal of Power Sources, 2019, 443, 227265.	4.0	26
107	Zero‧train Structure for Efficient Potassium Storage: Nitrogenâ€Enriched Carbon Dual onfinement CoP Composite. Advanced Energy Materials, 2022, 12, 2103341.	10.2	26
108	Fluorine-substituted Mg(BH ₄) ₂ ·2NH ₃ with improved dehydrogenation properties for hydrogen storage. Journal of Materials Chemistry A, 2015, 3, 570-578.	5.2	25

#	Article	IF	CITATIONS
109	A Novel Tin-Bonded Silicon Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45578-45588.	4.0	25
110	Hybrid Design of Bulkâ€Na Metal Anode to Minimize Cycleâ€Induced Interface Deterioration of Solid Na Metal Battery. Advanced Energy Materials, 2022, 12, .	10.2	25
111	Supported Subâ€Nanometer Clusters for Electrocatalysis Applications. Advanced Functional Materials, 2022, 32, .	7.8	25
112	2D Metalâ€Free Nanomaterials Beyond Graphene and Its Analogues toward Electrocatalysis Applications. Advanced Energy Materials, 2021, 11, 2101202.	10.2	24
113	Reversible Magnesium Metal Anode Enabled by Cooperative Solvation/Surface Engineering in Carbonate Electrolytes. Nano-Micro Letters, 2021, 13, 195.	14.4	24
114	A Redox Couple Strategy Enables Long ycling Li―and Mnâ€Rich Layered Oxide Cathodes by Suppressing Oxygen Release. Advanced Materials, 2022, 34, e2108543.	11.1	24
115	Enriched <i>d</i> â€Band Holes Enabling Fast Oxygen Evolution Kinetics on Atomicâ€Layered Defectâ€Rich Lithium Cobalt Oxide Nanosheets. Advanced Functional Materials, 2022, 32, .	7.8	24
116	Improved lithium storage properties of Mg2Si anode material synthesized by hydrogen-driven chemical reaction. Electrochemistry Communications, 2012, 25, 15-18.	2.3	23
117	Role of Co3O4 in improving the hydrogen storage properties of a LiBH4–2LiNH2 composite. Journal of Materials Chemistry A, 2014, 2, 11155.	5.2	23
118	Ion Hopping: Design Principles for Strategies to Improve Ionic Conductivity for Inorganic Solid Electrolytes. Small, 2022, 18, e2107064.	5.2	23
119	Cobalt Single Atoms Enabling Efficient Methanol Oxidation Reaction on Platinum Anchored on Nitrogenâ€Đoped Carbon. Small, 2022, 18, e2107067.	5.2	23
120	Ultrafine Nanocrystalline CeO ₂ @C ontaining NaAlH ₄ with Fast Kinetics and Good Reversibility for Hydrogen Storage. ChemSusChem, 2015, 8, 4180-4188.	3.6	22
121	A Unique Structural Highly Compacted Binderâ€Free Siliconâ€Based Anode with High Electronic Conductivity for Highâ€Performance Lithiumâ€Ion Batteries. Small Structures, 2022, 3, 2100174.	6.9	22
122	Mg2Si anode for Li-ion batteries: Linking structural change to fast capacity fading. Applied Physics Letters, 2014, 105, 213901.	1.5	21
123	Li–Si-alloy-assisted improvement in the intrinsic cyclability of Mg 2 Si as an anode material for Li-ion batteries. Acta Materialia, 2015, 98, 128-134.	3.8	21
124	In Situ Introduction of Li ₃ BO ₃ and NbH Leads to Superior Cyclic Stability and Kinetics of a LiBH ₄ -Based Hydrogen Storage System. ACS Applied Materials & Interfaces, 2020, 12, 893-903.	4.0	21
125	Hierarchical Ion/Electron Networks Enable Efficient Red Phosphorus Anode with High Mass Loading for Sodium Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	21
126	An ultrasound-assisted wet-chemistry approach towards uniform Mg(BH ₄) ₂ ·6NH ₃ nanoparticles with improved dehydrogenation properties. Journal of Materials Chemistry A, 2016, 4, 8366-8373.	5.2	19

#	Article	IF	CITATIONS
127	Preparation and Catalytic Activity of a Novel Nanocrystalline ZrO ₂ @C Composite for Hydrogen Storage in NaAlH ₄ . Chemistry - an Asian Journal, 2016, 11, 3541-3549.	1.7	18
128	Enhanced Hydrogen Storage Performance of MgH2 by the Catalysis of a Novel Intersected Y2O3/NiO Hybrid. Processes, 2021, 9, 892.	1.3	18
129	Remarkable catalysis of spinel ferrite XFe2O4 (XÂ=ÂNi, Co, Mn, Cu, Zn) nanoparticles on the dehydrogenation properties of LiAlH4: An experimental and theoretical study. Journal of Materials Science and Technology, 2022, 111, 189-203.	5.6	18
130	Nanosheet-like Lithium Borohydride Hydrate with 10 wt % Hydrogen Release at 70 °C as a Chemical Hydrogen Storage Candidate. Journal of Physical Chemistry Letters, 2019, 10, 1872-1877.	2.1	17
131	Controllable synthesis of 2D TiH2 nanoflakes with superior catalytic activity for low-temperature hydrogen cycling of NaAlH4. Chemical Engineering Journal, 2022, 427, 131546.	6.6	16
132	In-situ introduction of highly active TiO for enhancing hydrogen storage performance of LiBH4. Chemical Engineering Journal, 2022, 433, 134485.	6.6	16
133	Reversible hydrogen storage behavior of LiBH4–Mg(OH)2 composites. International Journal of Hydrogen Energy, 2014, 39, 7868-7875.	3.8	15
134	Lowâ€Coordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angewandte Chemie, 2019, 131, 12670-12674.	1.6	15
135	A high-strength SiCw/SiC–Si composite derived from pyrolyzed rice husks by liquid silicon infiltration. Journal of Materials Science, 2012, 47, 4921-4927.	1.7	14
136	Superior catalytic activity of in situ reduced metallic Co for hydrogen storage in a Co(OH) 2 -containing LiBH 4 /2LiNH 2 composite. Materials Research Bulletin, 2018, 97, 544-552.	2.7	14
137	Remarkably Improved Cycling Stability of Boron-Strengthened Multicomponent Layer Protected Micron-Si Composite Anode. ACS Sustainable Chemistry and Engineering, 2019, 7, 19167-19175.	3.2	14
138	A nanoconfined-LiBH4 system using a unique multifunctional porous scaffold of carbon wrapped ultrafine Fe3O4 skeleton for reversible hydrogen storage with high capacity. Chemical Engineering Journal, 2022, 428, 131056.	6.6	14
139	Compositionâ€Dependent Reaction Pathways and Hydrogen Storage Properties of LiBH ₄ /Mg(AlH ₄) ₂ Composites. Chemistry - an Asian Journal, 2015, 10, 2452-2459.	1.7	13
140	A facile method for determining a suitable voltage window for an amorphous Li12Si7 anode. Electrochimica Acta, 2014, 129, 373-378.	2.6	12
141	Room Temperature Conversion of Carbon Dioxide into Fuel Gases by Mechanochemically Reacting with Metal Hydrides. ChemistrySelect, 2017, 2, 5244-5247.	0.7	12
142	Regulating zinc metal anodes <i>via</i> novel electrolytes in rechargeable zinc-based batteries. Journal of Materials Chemistry A, 2022, 10, 14692-14708.	5.2	12
143	New insights into the effects of NaCl and LiCl on the hydrogen storage behaviours of a 6LiBH ₄ –Mg(AlH ₄) ₂ composite. RSC Advances, 2015, 5, 12144-12151.	1.7	11
144	Ultrafast hydrogenation of magnesium enabled by tetragonal ZrO2 hierarchical nanoparticles. Materials Today Nano, 2022, 18, 100200.	2.3	11

#	Article	IF	CITATIONS
145	Mechanistic insights into the remarkable catalytic activity of nanosized Co@C composites for hydrogen desorption from the LiBH4–2LiNH2 system. Catalysis Science and Technology, 2017, 7, 1838-1847.	2.1	10
146	Hydrogen Pressure-Dependent Dehydrogenation Performance of the Mg(NH ₂) ₂ –2LiH–0.07KOH System. ACS Applied Materials & Interfaces, 2020, 12, 15255-15261.	4.0	10
147	Impact of residual gas on the optoelectronic properties of Cs-sensitized In0.53Ga0.47As (0 0 1) surface. Journal of Colloid and Interface Science, 2021, 594, 47-53.	5.0	10
148	Multifunctional Surface Construction for Longâ€Term Cycling Stability of Liâ€Rich Mnâ€Based Layered Oxide Cathode for Liâ€Ion Batteries. Small, 2022, 18, .	5.2	10
149	Improved hydrogen storage properties of combined Ca(BH4)2 and LiBH4 system motivated by addition of LaMg3 assisted with ball milling in H2. International Journal of Hydrogen Energy, 2015, 40, 12325-12335.	3.8	9
150	Improved overall hydrogen storage properties of a CsH and KH co-doped Mg(NH ₂) ₂ /2LiH system by forming mixed amides of Li–K and Cs–Mg. RSC Advances, 2017, 7, 30357-30364.	1.7	9
151	Amorphous-Carbon-Supported Ultrasmall TiB2 Nanoparticles With High Catalytic Activity for Reversible Hydrogen Storage in NaAlH4. Frontiers in Chemistry, 2020, 8, 419.	1.8	9
152	Interaction of metallic magnesium with ammonia: Mechanochemical synthesis of Mg(NH2)2 for hydrogen storage. Journal of Alloys and Compounds, 2022, 907, 164397.	2.8	9
153	Hierarchical conformal coating enables highly stable microparticle Si anodes for advanced Li-ion batteries. Applied Materials Today, 2022, 26, 101403.	2.3	8
154	Titanium Hydride Nanoplates Enable 5 wt% of Reversible Hydrogen Storage by Sodium Alanate below 80°C. Research, 2021, 2021, 9819176.	2.8	8
155	SYNTHESIS AND CHARACTERIZATION OF LiFePO ₄ / C PREPARED VIA A SOL–GEL METHOD. Surface Review and Letters, 2008, 15, 133-138.	0.5	7
156	Solid-State Sintering Strategy for Simultaneous Nanosizing and Surface Coating of Iron Oxides as High-Capacity Anodes for Long-Life Li-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 6330-6337.	2.5	7
157	Catalyzed LiBH ₄ Hydrogen Storage System with <i>In Situ</i> Introduced Li ₃ BO ₃ and V for Enhanced Dehydrogenation and Hydrogenation Kinetics as Well as High Cycling Stability. ACS Applied Energy Materials, 2022, 5, 1226-1234.	2.5	6
158	Hydrogen Storage Properties of the Mg(NH ₃) ₆ Cl ₂ -LiH Combined System. Materials Transactions, 2011, 52, 627-634.	0.4	5
159	Synthesis and thermal decomposition properties of a novel dual-cation/anion complex hydride Li2Mg(BH4)2(NH2)2. International Journal of Hydrogen Energy, 2018, 43, 13981-13989.	3.8	5
160	Constructing Complementary Catalytic Components on Co ₄ N Nanowires to Achieve Efficient Hydrogen Evolution Catalysis. Advanced Energy and Sustainability Research, 0, , 2100219.	2.8	5
161	Solid State Electrolytes: Amorphous Dualâ€Layer Coating: Enabling High Liâ€Ion Conductivity of Nonâ€Sintered Garnetâ€Type Solid Electrolyte (Adv. Funct. Mater. 15/2021). Advanced Functional Materials, 2021, 31, 2170100.	7.8	4
162	Synthesis temperature dependence of the structural and electrochemical properties of Mg2Si anodic materials prepared via a hydrogen-driven chemical reaction. Ionics, 2015, 21, 2439-2445.	1.2	3

#	Article	IF	CITATIONS
163	A novel surface modification strategy for Li-rich Mn-based layered oxide cathodes of high-capacity and high-cyclic stability by an additive of LiBH4 to the electrolyte. Functional Materials Letters, 2021, 14, 2140003.	0.7	3
164	Rational design of robust and universal aqueous binders to enable highly stable cyclability of high•apacity conversion and alloyâ€ŧype anodes. Energy and Environmental Materials, 0, , .	7.3	2
165	Batteries: Highly Stable Cycling of Amorphous Li ₂ CO ₃ -Coated α-Fe ₂ O ₃ Nanocrystallines Prepared via a New Mechanochemical Strategy for Li-Ion Batteries (Adv. Funct. Mater. 3/2017). Advanced Functional Materials, 2017, 27, .	7.8	Ο
166	Batteries: A New Strategy to Effectively Suppress the Initial Capacity Fading of Iron Oxides by Reacting with LiBH ₄ (Adv. Funct. Mater. 16/2017). Advanced Functional Materials, 2017, 27, .	7.8	0