
SÅ,awomir Boncel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2771819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment. ACS Nano, 2011, 5, 9339-9344.	7.3	146
2	From blackness to invisibility – Carbon nanotubes role in the attenuation of and shielding from radio waves for stealth technology. Carbon, 2018, 126, 31-52.	5.4	114
3	Iodine monochloride as a powerful enhancer of electrical conductivity of carbon nanotube wires. Carbon, 2014, 73, 225-233.	5.4	104
4	En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays. Beilstein Journal of Nanotechnology, 2014, 5, 219-233.	1.5	73
5	Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials, 2011, 32, 7677-7686.	5.7	67
6	Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems – A review. Chemosphere, 2015, 136, 211-221.	4.2	67
7	Highly Active Nanobiocatalyst from Lipase Noncovalently Immobilized on Multiwalled Carbon Nanotubes for Baeyer–Villiger Synthesis of Lactones. ACS Sustainable Chemistry and Engineering, 2017, 5, 1685-1691.	3.2	55
8	Rheology of ionanofluids – A review. Journal of Molecular Liquids, 2020, 302, 112568.	2.3	53
9	Ultra-long carbon nanotube-paraffin composites of record thermal conductivity and high phase change enthalpy among paraffin-based heat storage materials. Journal of Energy Storage, 2021, 36, 102396.	3.9	52
10	Liberation of drugs from multi-wall carbon nanotube carriers. Journal of Controlled Release, 2013, 169, 126-140.	4.8	47
11	Remarkable Thermal Conductivity Enhancement in Carbon-Based Ionanofluids: Effect of Nanoparticle Morphology. ACS Applied Materials & Interfaces, 2020, 12, 38113-38123.	4.0	45
12	Infiltration of highly aligned carbon nanotube arrays with molten polystyrene. Materials Letters, 2011, 65, 2299-2303.	1.3	41
13	An electrically controlled drug delivery system based on conducting poly(3,4-ethylenedioxypyrrole) matrix. Bioelectrochemistry, 2016, 108, 13-20.	2.4	38
14	Carbohydrate Ionic Liquids and Salts as All-in-One Precursors for N-Doped Carbon. ACS Sustainable Chemistry and Engineering, 2019, 7, 19880-19888.	3.2	37
15	Magnetic carbon nanostructures in medicine. Journal of Materials Chemistry, 2012, 22, 31-37.	6.7	33
16	Covalently immobilized lipase on aminoalkyl-, carboxy- and hydroxy-multi-wall carbon nanotubes in the enantioselective synthesis of Solketal esters. Enzyme and Microbial Technology, 2016, 87-88, 61-69.	1.6	33
17	Alkaline lipase from Pseudomonas fluorescens non-covalently immobilised on pristine versus oxidised multi-wall carbon nanotubes as efficient and recyclable catalytic systems in the synthesis of Solketal esters. Enzyme and Microbial Technology, 2013, 53, 263-270.	1.6	30
18	Continuous Flow Chemo-Enzymatic Baeyer–Villiger Oxidation with Superactive and Extra-Stable Enzyme/Carbon Nanotube Catalyst: An Efficient Upgrade from Batch to Flow. Organic Process Research and Development, 2019, 23, 1386-1395.	1.3	30

#	Article	IF	CITATIONS
19	Michael versus retro-Michael reaction in the regioselective synthesis of N-1 and N-3 uracil adducts. Tetrahedron, 2010, 66, 8450-8457.	1.0	28
20	The True Amphipathic Nature of Graphene Flakes: A Versatile 2D Stabilizer. Advanced Materials, 2020, 32, e2000608.	11.1	28
21	Exceptionally active and reusable nanobiocatalyst comprising lipase non-covalently immobilized on multi-wall carbon nanotubes for the synthesis of diester plasticizers. Applied Catalysis A: General, 2019, 574, 41-47.	2.2	28
22	Electrothermal halogenation of carbon nanotube films. Carbon, 2014, 73, 259-266.	5.4	27
23	Poly(2,6-dimethyl-1,4-phenylene oxide) hybrid membranes filled with magnetically aligned iron-encapsulated carbon nanotubes (Fe@MWCNTs) for enhanced air separation. Diamond and Related Materials, 2018, 83, 21-29.	1.8	26
24	Highly Efficient Synthesis of Alkyl Levulinates from α-Angelica Lactone, Catalyzed with Lewis Acidic Trifloaluminate Ionic Liquids Supported on Carbon Nanotubes. ACS Sustainable Chemistry and Engineering, 2019, 7, 5184-5191.	3.2	24
25	Aligned carbon nanotube-polystyrene composites prepared by in situ polymerisation of stacked layers. Composites Science and Technology, 2011, 71, 1606-1611.	3.8	23
26	<i>In Vitro</i> Targeting and Selective Killing of T47D Breast Cancer Cells by Purpurin and 5-Fluorouracil Anchored to Magnetic CNTs: Nitrene-Based Functionalization versus Uptake, Cytotoxicity, and Intracellular Fate. ACS Biomaterials Science and Engineering, 2016, 2, 1273-1285.	2.6	23
27	Highly Conductive Doped Hybrid Carbon Nanotube–Graphene Wires. ACS Applied Materials & Interfaces, 2019, 11, 33207-33220.	4.0	22
28	Hybrids of Iron-Filled Multiwall Carbon Nanotubes and Anticancer Agents as Potential Magnetic Drug Delivery Systems: In Vitro Studies against Human Melanoma, Colon Carcinoma, and Colon Adenocarcinoma. Journal of Nanomaterials, 2017, 2017, 1-13.	1.5	21
29	Effect of ultrasonication time on microstructure, thermal conductivity, and viscosity of ionanofluids with originally ultra-long multi-walled carbon nanotubes. Ultrasonics Sonochemistry, 2021, 77, 105681.	3.8	19
30	Rieche formylation of carbon nanotubes – one-step and versatile functionalization route. RSC Advances, 2017, 7, 51374-51381.	1.7	18
31	Electroconductive textile coatings from pastes based on individualized multi-wall carbon nanotubes – Synergy of surfactant and nanotube aspect ratio. Progress in Organic Coatings, 2019, 130, 260-269.	1.9	18
32	Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon. Applied Surface Science, 2014, 301, 488-491.	3.1	17
33	A facile method to tune electronic properties of carbon nanotube films. Materials Letters, 2013, 106, 137-140.	1.3	16
34	A versatile method for direct determination of iron content in multi-wall carbon nanotubes by inductively coupled plasma atomic emission spectrometry with slurry sample introduction. RSC Advances, 2015, 5, 101634-101640.	1.7	16
35	Uracil as a Target for Nucleophilic and Electrophilic Reagents. Current Organic Synthesis, 2008, 5, 365-396.	0.7	15
36	Michael-type addition of azoles of broad-scale acidity to methyl acrylate. Beilstein Journal of Organic Chemistry, 2011, 7, 173-178.	1.3	15

#	Article	IF	CITATIONS
37	Water-Tolerant Trifloaluminate Ionic Liquids: New and Unique Lewis Acidic Catalysts for the Synthesis of Chromane. Frontiers in Chemistry, 2018, 6, 535.	1.8	15
38	Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film. Beilstein Journal of Nanotechnology, 2011, 2, 311-317.	1.5	14
39	Shear-induced crystallisation of molten isotactic polypropylene within the intertube channels of aligned multi-wall carbon nanotube arrays towards structurally controlled composites. Materials Letters, 2014, 116, 53-56.	1.3	14
40	The operational window of carbon nanotube electrical wires treated with strong acids and oxidants. Scientific Reports, 2018, 8, 14332.	1.6	14
41	Selective carboxylation versus layer-by-layer unsheathing of multi-walled carbon nanotubes: new insights from the reaction with boiling nitrating mixture. RSC Advances, 2019, 9, 37608-37613.	1.7	14
42	From lab and up: superior and economic heat transfer performance of ionanofluids containing long carbon nanotubes and 1-ethyl-3-methylimidazolium thiocyanate. International Journal of Heat and Mass Transfer, 2021, 172, 121161.	2.5	14
43	The effect of solvent on the synthesis and physicochemical properties of poly(3,4-ethylenedioxypyrrole). Synthetic Metals, 2016, 217, 231-236.	2.1	13
44	<p>Oxygen Functional Groups on MWCNT Surface as Critical Factor Boosting T2 Relaxation Rate of Water Protons: Towards Improved CNT-Based Contrast Agents</p> . International Journal of Nanomedicine, 2020, Volume 15, 7433-7450.	3.3	13
45	Oxidised multi-wall carbon nanotubes–(R)-polylactide composite with a covalent β-d-uridine filler-matrix linker. Materials Letters, 2013, 91, 50-54.	1.3	12
46	Effect of immobilization and release of ciprofloxacin and quercetin on electrochemical properties of poly(3,4-ethylenedioxypyrrole) matrix. Synthetic Metals, 2019, 249, 52-62.	2.1	12
47	Carbon nanotube/PTFE as a hybrid platform for lipase B from <i>Candida antarctica</i> in transformation of α-angelica lactone into alkyl levulinates. Catalysis Science and Technology, 2020, 10, 3255-3264.	2.1	12
48	Outperformance in Acrylation: Supported D-Glucose-Based Ionic Liquid Phase on MWCNTs for Immobilized Lipase B from Candida antarctica as Catalytic System. Materials, 2021, 14, 3090.	1.3	12
49	Carbon nanotube materials for electrocardiography. RSC Advances, 2021, 11, 3020-3042.	1.7	12
50	The Influence of Base on Regioselectivity of 5-Substituted Uracils Addition to Michael Acceptors. Letters in Organic Chemistry, 2006, 3, 534-538.	0.2	11
51	Heat transfer nanofluid based on curly ultra-long multi-wall carbon nanotubes. Heat and Mass Transfer, 2018, 54, 333-339.	1.2	11
52	Carbon Nanotube Wind Turbine Blades: How Far Are We Today from Laboratory Tests to Industrial Implementation?. ACS Applied Nano Materials, 2018, 1, 6542-6555.	2.4	11
53	Bio-Based Nanofluids of Extraordinary Stability and Enhanced Thermal Conductivity as Sustainable Green Heat Transfer Media. ACS Sustainable Chemistry and Engineering, 2021, 9, 7369-7378.	3.2	11
54	Novel Acyclic Amide-Conjugated Nucleosides and Their Analogues. Nucleosides, Nucleotides and Nucleic Acids, 2009, 28, 103-117.	0.4	10

#	Article	IF	CITATIONS
55	Durability and surface chemistry of horizontally aligned CNT films as electrodes upon electrolysis of acidic aqueous solution. Journal of Materials Science, 2014, 49, 7231-7243.	1.7	10
56	Superactive tin(II) triflate/carbon nanotube catalyst for the Baeyer-Villiger oxidation. Applied Catalysis A: General, 2018, 556, 81-91.	2.2	10
57	Thermophysical Properties of IoNanofluids Composed of 1-ethyl-3-methylimidazolium Thiocyanate and Carboxyl-functionalized Long Multi-walled Carbon Nanotubes. Fluids, 2020, 5, 214.	0.8	10
58	Nanobiocatalyst from lipase non-covalently immobilized on multiwalled carbon nanotubes for copolymerization of ε-caprolactone and trimethylene carbonate. Polymer Degradation and Stability, 2019, 170, 109000.	2.7	9
59	Ullmann Reactions of Carbon Nanotubes—Advantageous and Unexplored Functionalization toward Tunable Surface Chemistry. Nanomaterials, 2019, 9, 1619.	1.9	9
60	Thermophysical Properties of Nanofluids Composed of Ethylene Glycol and Long Multi-Walled Carbon Nanotubes. Fluids, 2020, 5, 241.	0.8	9
61	PTFE-Carbon Nanotubes and Lipase B from Candida antarctica—Long-Lasting Marriage for Ultra-Fast and Fully Selective Synthesis of Levulinate Esters. Materials, 2021, 14, 1518.	1.3	9
62	Chemo-Enzymatic Baeyer–Villiger Oxidation Facilitated with Lipases Immobilized in the Supported Ionic Liquid Phase. Materials, 2021, 14, 3443.	1.3	9
63	Amalgamation of complex iron(III) ions and iron nanoclusters with MWCNTs as a route to potential T2 MRI contrast agents. International Journal of Nanomedicine, 2015, 10, 3581.	3.3	8
64	Nitrile N-oxides in programmable one-pot functionalization of multi-wall carbon nanotubes via 1,3-dipolar cycloaddition. RSC Advances, 2016, 6, 64129-64132.	1.7	8
65	N-1 regioselective Michael-type addition of 5-substituted uracils to (2-hydroxyethyl) acrylate. Beilstein Journal of Organic Chemistry, 2007, 3, 40.	1.3	7
66	A role of nanotube dangling pyrrole and oxygen functions in the electrochemical synthesis of polypyrrole/MWCNTs hybrid materials. Applied Surface Science, 2014, 317, 794-802.	3.1	7
67	Fe 3+ ions anchored to Fe@O-MWCNTs as double impact T 2 MRI contrast agents. Materials Letters, 2014, 136, 34-36.	1.3	7
68	Swift modification of resistively heated carbon nanotube films by the action of hydrogen peroxide. Materials Letters, 2014, 119, 115-118.	1.3	7
69	Hybrid organic–inorganic membranes based on sulfonated poly (ether ether ketone) matrix and iron-encapsulated carbon nanotubes and their application in CO ₂ separation. RSC Advances, 2022, 12, 13367-13380.	1.7	7
70	Electrical Properties of the Carbon Nanotube-Reinforced Geopolymer Studied by Impedance Spectroscopy. Materials, 2022, 15, 3543.	1.3	7
71	Electrophoretic Deposition of Layer-by-Layer Unsheathed Carbon Nanotubes—A Step Towards Steerable Surface Roughness and Wettability. Materials, 2020, 13, 595.	1.3	6
72	High AC and DC Electroconductivity of Scalable and Economic Graphite–Diamond Polylactide Nanocomposites. Materials, 2021, 14, 2835.	1.3	6

#	Article	IF	CITATIONS
73	Liquid phase adsorption induced nanosizing of graphene oxide. Carbon, 2021, 183, 948-957.	5.4	6
74	Dialkyl Succinates and Adipates as Alternative Plasticizers—Even More Efficient Synthesis. Materials, 2021, 14, 6219.	1.3	6
75	Machine Learning Approach for Application-Tailored Nanolubricants' Design. Nanomaterials, 2022, 12, 1765.	1.9	6
76	Symmetrical and unsymmetrical <i>α</i> , <i>ω</i> -nucleobase amide-conjugated systems. Beilstein Journal of Organic Chemistry, 2010, 6, 34.	1.3	5
77	Michael-type Addition as a Convenient Method for Regioselective N-Alkylation of Ambident Uracils. Synthesis, 2010, 2010, 1573-1589.	1.2	5
78	Manufacture of Networks from Large Diameter Single-Walled Carbon Nanotubes of Particular Electrical Character. Nanomaterials, 2019, 9, 614.	1.9	5
79	Unexpected Formation of 2-Acetyl-3-Aryl-2-Methyl-2,3-Dihydroquinazolin-4(1H)-Ones in the Reaction of 2-Amino-N'-Arylbenzamidines with Butanedione. Chemistry of Heterocyclic Compounds, 2014, 50, 1291-1297.	0.6	4
80	"Binary salt―of hexaneâ€1,6â€diaminium adipate and "carbon nanotubate―as a synthetic precursor of carbon nanotube/Nylonâ€6,6 hybrid materials. Polymer Composites, 2014, 35, 523-529.	2.3	4
81	Oxidised carbon nanotubes as dual-domain synergetic stabilizers in electroconductive carbon nanotube flexible coatings. RSC Advances, 2018, 8, 30712-30716.	1.7	4
82	Novel 5-(N-Alkylaminouracil) Acyclic Nucleosides. Synthesis, 2011, 2011, 603-610.	1.2	3
83	The nanotube express: Delivering a stapled peptide to the cell surface. Journal of Colloid and Interface Science, 2021, 604, 670-679.	5.0	3
84	Measurements of the thermal conductivity of 1-ethyl-3-methylimidazolium thiocyanate at temperatures from (296 to 365) K and at pressures up to 30 MPa. Journal of Molecular Liquids, 2022, , 119091.	2.3	2
85	Convenient Synthesis of Pyrimidine acyclo-2,2'-anhydronucleosides and their Exploitation Toward Selected N-nucleophiles. Current Organic Chemistry, 2012, 16, 2332-2342.	0.9	1
86	CNT fibers p-doped with F4TCNQ (2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane). , 2017, , .		1
87	Highly Active Trifloaluminate Ionic Liquids as Recyclable Catalysts for Green Oxidation of 2,3,6-Trimethylphenol to Trimethyl-1,4-Benzoquinone. Catalysts, 2020, 10, 1469.	1.6	1
88	Characteristics of Inorganic–Organic Hybrid Membranes Containing Carbon Nanotubes with Increased Iron-Encapsulated Content for CO2 Separation. Membranes, 2022, 12, 132.	1.4	1
89	Biomimetically Inspired Highly Homogeneous Hydrophilization of Graphene with Poly(<scp>I</scp> -DOPA): Toward Electroconductive Coatings from Water-Processable Paints. ACS Sustainable Chemistry and Engineering, 2022, 10, 6596-6608.	3.2	1
90	Heterogeneous catalysts based on carbon nanostructures in model chemical processes Katalizatory heterogeniczne na bazie nanostruktur węglowych w modelowych procesach chemicznych. Przemysl Chemiczny, 2016, 1, 64-68.	0.0	0

IF

CITATIONS

Article

91	Carbon nanotube fibe	rs doped with iron via	Fenton reaction., 2018,,.
----	----------------------	------------------------	---------------------------