
Elisa Palacios-Lidon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2771031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kelvin Probe Microscopy Investigation of Poly-Octylthiophene Aggregates. Materials, 2022, 15, 1212.	1.3	Ο
2	Nanoscale Charge Density and Dynamics in Graphene Oxide. , 2021, 3, 1826-1831.		3
3	Localized charges in thin films by Kelvin probe force microscopy: From single to multiple charges. Physical Review B, 2020, 101, .	1.1	6
4	Unravelling fullerene–perovskite interactions introduces advanced blend films for performance-improved solar cells. Sustainable Energy and Fuels, 2019, 3, 2779-2787.	2.5	16
5	Nanoscale J-aggregates of poly(3-hexylthiophene): key to electronic interface interactions with graphene oxide as revealed by KPFM. Nanoscale, 2019, 11, 11202-11208.	2.8	4
6	Co-Solvent Effect in the Processing of the Perovskite:Fullerene Blend Films for Electron Transport Layer-Free Solar Cells. Journal of Physical Chemistry C, 2018, 122, 2512-2520.	1.5	19
7	Localized charge imaging with scanning Kelvin probe microscopy. Nanotechnology, 2017, 28, 025703.	1.3	10
8	Charge distribution from SKPM images. Physical Chemistry Chemical Physics, 2017, 19, 27299-27304.	1.3	14
9	Charging of highly resistive granular metal films. Physical Review B, 2017, 95, .	1.1	3
10	Nanophotoactivity of Porphyrin Functionalized Polycrystalline ZnO Films. ACS Applied Materials & Interfaces, 2016, 8, 16783-16790.	4.0	7
11	Conducting polymers as electron glasses: surface charge domains and slow relaxation. Scientific Reports, 2016, 6, 21647.	1.6	10
12	Kelvin Probe Force Microscopy in Surface Chemistry: Reactivity of Pd Nanoparticles on Highly Oriented Pirolytic Graphite. ACS Catalysis, 2014, 4, 1838-1844.	5.5	29
13	Face-Selective Etching of ZnO during Attachment of Dyes. Journal of Physical Chemistry C, 2013, 117, 18414-18422.	1.5	7
14	Photobleaching of MEH-PPV thin films: Correlation between optical properties and the nanoscale surface photovoltage. Solar Energy Materials and Solar Cells, 2013, 117, 15-21.	3.0	8
15	Nanoscale Electro-Optical Properties of Organic Semiconducting Thin Films: From Individual Materials to the Blend. Journal of Physical Chemistry C, 2012, 116, 17919-17927.	1.5	7
16	Nanoscale surface photovoltage of organic semiconductors with two pass Kelvin probe microscopy. Nanotechnology, 2011, 22, 375704.	1.3	11
17	Thermal frequency noise in dynamic scanning force microscopy. Journal of Applied Physics, 2011, 109, .	1.1	13
18	Surface characterization of P3OT thin films by variable temperature scanning force microscopy. Synthetic Metals, 2011, 161, 1651-1659.	2.1	1

,

Elisa Palacios-Lidon

#	Article	IF	CITATIONS
19	Wavelength dependence of nanoscale photodegradation in poly(3-octylthiophene) thin films. Polymer Degradation and Stability, 2011, 96, 1279-1285.	2.7	14
20	Response to the "Comment on â€~Thermal frequency noise in dynamic scanning force microscopy'―[J. Appl. Phys. 110, 036107 (2011)]. Journal of Applied Physics, 2011, 110, .	1.1	1
21	Contrast inversion in non-contact Dynamic Scanning Force Microscopy: What is high and what is low?. Ultramicroscopy, 2010, 110, 789-800.	0.8	22
22	TEM-assisted dynamic scanning force microscope imaging of (001) antigorite: Surfaces and steps on a modulated silicate. American Mineralogist, 2010, 95, 673-685.	0.9	8
23	Anisotropic chemical etching of semipolar {10ar {1}ar {1}}mbox {/} {10ar {1}{+}1} ZnO crystallographic planes: polarity versus dangling bonds. Nanotechnology, 2009, 20, 065701.	1.3	11
24	Enhancing dynamic scanning force microscopy in air: as close as possible. Nanotechnology, 2009, 20, 085707.	1.3	27
25	Layered self-organized structures on poly(3-octylthiophene) thin films studied by scanning probe microscopy. European Polymer Journal, 2008, 44, 2506-2515.	2.6	14
26	Surface potential domains on lamellar P3OT structures. Nanotechnology, 2008, 19, 065709.	1.3	14
27	Electronic and structural properties of poly-(3-octylthiophene) and graphitic nanoparticle blends. EPJ Applied Physics, 2007, 37, 283-286.	0.3	4
28	Domain formation by a Rhodococcus sp. biosurfactant trehalose lipid incorporated into phosphatidylcholine membranes. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2596-2604.	1.4	27
29	Formation and Rupture of Schottky Nanocontacts on ZnO Nanocolumns. Nano Letters, 2007, 7, 1505-1511.	4.5	54
30	Nanogoniometry with Scanning Force Microscopy: A Model Study of CdTe Thin Films. Small, 2007, 3, 474-480.	5.2	5
31	Nanoscale determination of surface orientation and electrostatic properties of ZnO thin films. Applied Physics A: Materials Science and Processing, 2007, 88, 77-82.	1.1	7
32	Nanoscale Characterization of the Morphology and Electrostatic Properties of Poly(3-octylthiophene)/Graphite-Nanoparticle Blends. Advanced Functional Materials, 2006, 16, 1975-1984.	7.8	25
33	Quantitative analysis of tip–sample interaction in non-contact scanning force spectroscopy. Nanotechnology, 2006, 17, 5491-5500.	1.3	19
34	Facets evolution and surface electrical properties of nonpolar m-plane ZnO thin films. Applied Physics Letters, 2006, 88, 261912.	1.5	45
35	Modification of the Natural Photonic Bandgap of Synthetic Opals via Infilling with Crystalline InP. Advanced Functional Materials, 2005, 15, 411-417.	7.8	18
36	Photonic band gap properties of GaP opals with a new topology. Applied Physics B: Lasers and Optics, 2005, 81, 205-208.	1.1	3

Elisa Palacios-Lidon

#	Article	IF	CITATIONS
37	Quantitative electrostatic force microscopy on heterogeneous nanoscale samples. Applied Physics Letters, 2005, 87, 154106.	1.5	27
38	Optical and morphological study of disorder in opals. Journal of Applied Physics, 2005, 97, 063502.	1.1	53
39	Polarity Effects on ZnO Films Grown along the Nonpolar[112Â ⁻ 0]Direction. Physical Review Letters, 2005, 95, 226105.	2.9	63
40	Self-assembly approach to optical metamaterials. Journal of Optics, 2005, 7, S244-S254.	1.5	56
41	Engineered Planar Defects Embedded in Opals. Advanced Materials, 2004, 16, 341-345.	11.1	143
42	Design of photonic bands for opal-based photonic crystals. Photonics and Nanostructures - Fundamentals and Applications, 2004, 2, 117-125.	1.0	15
43	The Role of Intermolecular and Moleculeâ^'Substrate Interactions in the Stability of Alkanethiol Nonsaturated Phases on Au(111). Journal of the American Chemical Society, 2004, 126, 385-395.	6.6	72
44	Photonic slab heterostructures based on opals. , 2004, 5450, 1.		1
45	Optical and morphological study of compound polymer opals. , 2004, , .		0
46	Optical study of the pseudogap in thickness and orientation controlled artificial opals. Physical Review B, 2003, 68, .	1.1	188
47	Optical study of the full photonic band gap in silicon inverse opals. Applied Physics Letters, 2002, 81, 4925-4927.	1.5	49
48	Materials aspects of opals as photonic crystals. , 0, , .		0