
Valentin Santos Reyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2770920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fractionation of <i>Eucalyptus regnans</i> wood: properties of the soluble products and reactivity of the treated solids. Journal of Wood Chemistry and Technology, 2022, 42, 46-57.	1.7	1
2	Evaluation of Acidic Ionic Liquids as Catalysts for Furfural Production from Eucalyptus nitens Wood. Molecules, 2022, 27, 4258.	3.8	2
3	Biomimetic Vanadate and Molybdate Systems for Oxidative Upgrading of Iono- and Organosolv Hard- and Softwood Lignins. Processes, 2020, 8, 1161.	2.8	3
4	Performance of 1-(3-Sulfopropyl)-3-Methylimidazolium Hydrogen Sulfate as a Catalyst for Hardwood Upgrading into Bio-Based Platform Chemicals. Catalysts, 2020, 10, 937.	3.5	2
5	Delignification of autohydrolyzed wood in media containing water and a protic ionic liquid. Journal of Wood Chemistry and Technology, 2020, 40, 235-247.	1.7	7
6	One-Pot Processing of <i>Eucalyptus globulus</i> Wood under Microwave Heating: Simultaneous Delignification and Polysaccharide Conversion into Platform Chemicals. ACS Sustainable Chemistry and Engineering, 2020, 8, 10115-10124.	6.7	8
7	Manufacture of Platform Chemicals from Pine Wood Polysaccharides in Media Containing Acidic Ionic Liquids. Polymers, 2020, 12, 1215.	4.5	10
8	Autocatalytic Fractionation of Wood Hemicelluloses: Modeling of Multistage Operation. Catalysts, 2020, 10, 337.	3.5	3
9	Technologies for Eucalyptus wood processing in the scope of biorefineries: A comprehensive review. Bioresource Technology, 2020, 311, 123528.	9.6	35
10	Characterization of Eucalyptus nitens Lignins Obtained by Biorefinery Methods Based on Ionic Liquids. Molecules, 2020, 25, 425.	3.8	10
11	Biorefinery processes for the valorization of Miscanthus polysaccharides: from constituent sugars to platform chemicals. Industrial Crops and Products, 2019, 134, 309-317.	5.2	29
12	Multi-Stage Hydrothermal Processing of <i>Eucalyptus Globulus</i> Wood: An Experimental Assessment. Journal of Wood Chemistry and Technology, 2019, 39, 329-342.	1.7	4
13	Assesment on the chemical fractionation of Eucalyptus nitens wood: Characterization of the products derived from the structural components. Bioresource Technology, 2019, 281, 269-276.	9.6	17
14	Production of 5-Hydroxymethylfurfural from pine wood via biorefinery technologies based on fractionation and reaction in ionic liquids. BioResources, 2019, 14, 4733-4747.	1.0	9
15	Manufacture of Furfural from Xylan-containing Biomass by Acidic Processing of Hemicellulose-Derived Saccharides in Biphasic Media Using Microwave Heating. Journal of Wood Chemistry and Technology, 2018, 38, 198-213.	1.7	19
16	A Biorefinery Cascade Conversion of Hemicellulose-Free Eucalyptus Globulus Wood: Production of Concentrated Levulinic Acid Solutions for γ-Valerolactone Sustainable Preparation. Catalysts, 2018, 8, 169.	3.5	29
17	Aqueous fractionation of hardwood: selective glucuronoxylan solubilisation and purification of the reaction products. Journal of Chemical Technology and Biotechnology, 2017, 92, 367-374.	3.2	13
18	Manufacture, Characterization, and Properties of Poly-(lactic acid) and its Blends with Esterified Pine Lignin. BioResources, 2016, 11, .	1.0	20

VALENTIN SANTOS REYES

#	Article	IF	CITATIONS
19	Furfural production from Eucalyptus wood using an Acidic Ionic Liquid. Carbohydrate Polymers, 2016, 146, 20-25.	10.2	68
20	Furfural production from birch hemicelluloses by two-step processing: a potential technology for biorefineries. Holzforschung, 2016, 70, 901-910.	1.9	30
21	Furfural production in biphasic media using an acidic ionic liquid as a catalyst. Carbohydrate Polymers, 2016, 153, 421-428.	10.2	25
22	Furfural production using ionic liquids: A review. Bioresource Technology, 2016, 202, 181-191.	9.6	219
23	Sustainable conversion of Pinus pinaster wood into biofuel precursors: A biorefinery approach. Fuel, 2016, 164, 51-58.	6.4	42
24	Sustainable Production of Levulinic Acid from the Cellulosic Fraction of <i>Pinus Pinaster </i> Wood: Operation in Aqueous Media Under Microwave Irradiation. Journal of Wood Chemistry and Technology, 2015, 35, 315-324.	1.7	30
25	Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment. Journal of Agricultural and Food Chemistry, 2015, 63, 8093-8102.	5.2	59
26	Manufacture of Microcrystalline Cellulose from <i>Eucalyptus globulus</i> Wood Using an Environmentally Friendly Biorefinery Method. Journal of Wood Chemistry and Technology, 2014, 34, 8-19.	1.7	16
27	Acidic processing of hemicellulosic saccharides from pine wood: Product distribution and kinetic modeling. Bioresource Technology, 2014, 162, 192-199.	9.6	24
28	Furan manufacture from softwood hemicelluloses by aqueous fractionation and further reaction in a catalyzed ionic liquid: a biorefinery approach. Journal of Cleaner Production, 2014, 76, 200-203.	9.3	29
29	Fractionation of extracted hemicellulosic saccharides from Pinus pinaster wood by multistep membrane processing. Journal of Membrane Science, 2013, 428, 281-289.	8.2	19
30	Aqueous processing of Pinus pinaster wood: Kinetics of polysaccharide breakdown. Chemical Engineering Journal, 2013, 231, 380-387.	12.7	18
31	Manufacture of Levulinic Acid from Pine Wood Hemicelluloses: A Kinetic Assessment. Industrial & Engineering Chemistry Research, 2013, 52, 3951-3957.	3.7	22
32	Production of furans from hemicellulosic saccharides in biphasic reaction systems. Holzforschung, 2013, 67, 923-929.	1.9	16
33	Effects of hydrothermal processing on the cellulosic fraction of <i>Eucalyptus globulus</i> wood. Holzforschung, 2013, 67, 33-40.	1.9	27
34	Silane-treated lignocellulosic fibers as reinforcement material in polylactic acid biocomposites. Journal of Thermoplastic Composite Materials, 2012, 25, 1005-1022.	4.2	29
35	Production of hemicellulosic sugars from Pinus pinaster wood by sequential steps of aqueous extraction and acid hydrolysis. Wood Science and Technology, 2012, 46, 271-285.	3.2	35
36	Manufacture of fibrous reinforcements for biodegradable biocomposites from <i>Citysus scoparius</i> . Journal of Chemical Technology and Biotechnology, 2011, 86, 575-583.	3.2	11

VALENTIN SANTOS REYES

#	ARTICLE	IF	CITATIONS
37	Manufacture of fibrous reinforcements for biocomposites and hemicellulosic oligomers from bamboo. Chemical Engineering Journal, 2011, 167, 278-287.	12.7	37
38	Assessment on the effects of the operational conditions on the manufacture of PLA-based composites using an integrated compounding–injection moulding machine. Collection of Czechoslovak Chemical Communications, 2011, 76, 1509-1527.	1.0	0
39	Purification of oligosaccharides obtained from Pinus pinaster hemicelluloses by diafiltration. Desalination and Water Treatment, 2011, 27, 48-53.	1.0	20
40	Rheological behaviour of carboxymethylcellulose manufactured from TCF-bleached Milox pulps. Food Hydrocolloids, 2005, 19, 313-320.	10.7	25
41	Dissolving pulp from TCF bleached Acetosolv beech pulp. Journal of Chemical Technology and Biotechnology, 2004, 79, 1098-1104.	3.2	16
42	Simulation of an Organosolv Pulping Process:Â Generalized Material Balances and Design Calculations. Industrial & Engineering Chemistry Research, 2003, 42, 349-356.	3.7	25
43	Multistage Organosolv Pulping: A Method for Obtaining Pulps with Low Hemicellulose Contents. Collection of Czechoslovak Chemical Communications, 2003, 68, 1163-1174.	1.0	5
44	Totally chlorine-free bleaching of Acetosolv pulps: a clean approach to dissolving pulp manufacture. Journal of Chemical Technology and Biotechnology, 2001, 76, 1117-1123.	3.2	17
45	Deacetylation of Eucalyptus globulus Acetosolv Pulps in Aqueous Media: A Kinetic Study. Collection of Czechoslovak Chemical Communications, 2001, 66, 1443-1456.	1.0	0
46	Optimization of beech wood pulping in catalyzed acetic acid media. Canadian Journal of Chemical Engineering, 2000, 78, 964-973.	1.7	17
47	Formic Acid-Peroxyformic Acid Pulping of <i>Fagus sylvatica</i> . Journal of Wood Chemistry and Technology, 2000, 20, 395-413.	1.7	29
48	Simulation of Acetosolv Pulping of <i>Eucalyptus</i> Wood. Journal of Wood Chemistry and Technology, 1999, 19, 225-246.	1.7	17
49	Kinetics of Catalyzed Organosolv Processing of Pine Wood. Industrial & Engineering Chemistry Research, 1995, 34, 4333-4342.	3.7	50