
John J Lapres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2770827/publications.pdf Version: 2024-02-01

IOHN LLADDES

#	Article	IF	CITATIONS
1	Peanut butter as an alternative dose delivery method to prevent strain-dependent orogastric gavage-induced stress in mouse teratogenicity studies. Journal of Pharmacological and Toxicological Methods, 2021, 107, 106948.	0.3	1
2	Genetics-Based Approach to Identify Novel Genes Regulated by the Aryl Hydrocarbon Receptor inÂMouse Liver. Toxicological Sciences, 2021, 181, 285-294.	1.4	3
3	An Automated Method To Predict Mouse Gene and Protein Sequences Using Variant Data. G3: Genes, Genomes, Genetics, 2020, 10, 925-932.	0.8	1
4	Characterizing the Role of HMC-CoA Reductase in Aryl Hydrocarbon Receptor-Mediated Liver Injury in C57BL/6 Mice. Scientific Reports, 2019, 9, 15828.	1.6	11
5	Incorporating population-level genetic variability within laboratory models in toxicology: From the individual to the population. Toxicology, 2018, 395, 1-8.	2.0	27
6	Altered thymocyte and T cell development in neonatal mice with hyperoxia-induced lung injury. Journal of Perinatal Medicine, 2018, 46, 441-449.	0.6	10
7	Characterizing <i>Serpinb2</i> as a Modulator of TCDD-Induced Suppression of the B Cell. Chemical Research in Toxicology, 2018, 31, 1248-1259.	1.7	5
8	Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicology and Applied Pharmacology, 2016, 304, 121-132.	1.3	64
9	The Influence of Human Interindividual Variability on the Low-Dose Region of Dose-Response Curve Induced by 2,3,7,8-Tetrachlorodibenzo- <i>p</i> Dioxin in Primary B Cells. Toxicological Sciences, 2016, 153, 352-360.	1.4	14
10	Data of enzymatic activities of the electron transport chain and ATP synthase complexes in mouse hepatoma cells following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Data in Brief, 2016, 8, 93-97.	0.5	5
11	AHR-dependent changes in the mitochondrial proteome in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Data in Brief, 2016, 8, 191-195.	0.5	3
12	Hypoxia Inducible Factors Modulate Mitochondrial Oxygen Consumption and Transcriptional Regulation of Nuclear-Encoded Electron Transport Chain Genes. Biochemistry, 2015, 54, 3739-3748.	1.2	35
13	Contributions of Nonhematopoietic Cells and Mediators to Immune Responses: Implications For Immunotoxicology. Toxicological Sciences, 2015, 145, 214-232.	1.4	11
14	Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice. PLoS ONE, 2015, 10, e0139270.	1.1	6
15	Loss of Hypoxia-Inducible Factor 2 Alpha in the Lung Alveolar Epithelium of Mice Leads to Enhanced Eosinophilic Inflammation in Cobalt-Induced Lung Injury. Toxicological Sciences, 2014, 137, 447-457.	1.4	15
16	The Aryl-Hydrocarbon Receptor Protein Interaction Network (AHR-PIN) as Identified by Tandem Affinity Purification (TAP) and Mass Spectrometry. Journal of Toxicology, 2013, 2013, 1-12.	1.4	14
17	Neonatal epithelial hypoxia inducible factor-1α expression regulates the response of the lung to experimental asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L455-L462.	1.3	8
18	The aryl hydrocarbon receptor interacts with ATP5α1, a subunit of the ATP synthase complex, and modulates mitochondrial function. Toxicology and Applied Pharmacology, 2011, 254, 299-310.	1.3	43

JOHN J LAPRES

#	Article	IF	CITATIONS
19	The Role of Hypoxia-Inducible Factor-1α in Acetaminophen Hepatotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 492-502.	1.3	39
20	Effects of TCDD on the expression of nuclear encoded mitochondrial genes. Toxicology and Applied Pharmacology, 2010, 246, 58-65.	1.3	42
21	HIF1α, Acute Cobalt Toxicity, and Lung Inflammation—Reply. Toxicological Sciences, 2010, 118, 319-319.	1.4	0
22	Acute Cobalt-Induced Lung Injury and the Role of Hypoxia-Inducible Factor $1\hat{l}\pm$ in Modulating Inflammation. Toxicological Sciences, 2010, 116, 673-681.	1.4	32
23	Role of hypoxia-inducible factor 1α in modulating cobalt-induced lung inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L139-L147.	1.3	32
24	HIF1α Is Essential for Normal Intrauterine Differentiation of Alveolar Epithelium and Surfactant Production in the Newborn Lung of Mice. Journal of Biological Chemistry, 2008, 283, 33650-33657.	1.6	62
25	Hypoxia, drug therapy and toxicity. , 2007, 113, 229-246.		100
26	Identification and Characterization of Genes Susceptible to Transcriptional Cross-Talk between the Hypoxia and Dioxin Signaling Cascades. Chemical Research in Toxicology, 2006, 19, 1284-1293.	1.7	35
27	Gene Expression Profiling of the Hypoxia Signaling Pathway in Hypoxia-Inducible Factor 1α Null Mouse Embryonic Fibroblasts. Gene Expression, 2003, 11, 181-197.	0.5	95
28	ARA9 Modifies Agonist Signaling through an Increase in Cytosolic Aryl Hydrocarbon Receptor. Journal of Biological Chemistry, 2000, 275, 6153-6159.	1.6	106
29	Characterization of the Ah Receptor-associated Protein, ARA9. Journal of Biological Chemistry, 1998, 273, 33580-33587.	1.6	180