
Ben G Szaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2770407/publications.pdf Version: 2024-02-01

REN C SZARO

#	Article	IF	CITATIONS
1	Developmental and Injury-induced Changes in DNA Methylation in Regenerative versus Non-regenerative Regions of the Vertebrate Central Nervous System. BMC Genomics, 2022, 23, 2.	2.8	8
2	Neurophysiological and Behavioral Analysis in Xenopus. Cold Spring Harbor Protocols, 2021, 2021, pdb.top106849.	0.3	0
3	Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons. BMC Genomics, 2020, 21, 540.	2.8	11
4	Comparisons of SOCS mRNA and protein levels in Xenopus provide insights into optic nerve regenerative success. Brain Research, 2019, 1704, 150-160.	2.2	3
5	Tracing Central Nervous System Axon Regeneration in Xenopus. Cold Spring Harbor Protocols, 2018, 2018, 2018, pdb.prot101030.	0.3	3
6	Post-transcriptional regulation mediated by specific neurofilament introns in vivo. Journal of Cell Science, 2016, 129, 1500-11.	2.0	1
7	A novel role for the nuclear localization signal in regulating hnRNP K protein stability inÂvivo. Biochemical and Biophysical Research Communications, 2016, 478, 772-776.	2.1	7
8	Using Xenopus Embryos to Study Transcriptional and Posttranscriptional Gene Regulatory Mechanisms of Intermediate Filaments. Methods in Enzymology, 2016, 568, 635-660.	1.0	3
9	Phosphorylation of heterogeneous nuclear ribonucleoprotein K at an extracellular signal-regulated kinase phosphorylation site promotes neurofilament-medium protein expression and axon outgrowth in Xenopus. Neuroscience Letters, 2015, 607, 59-65.	2.1	8
10	Microtubuleâ€associated protein tau promotes neuronal class <scp>II</scp> βâ€ŧubulin microtubule formation and axon elongation in embryonic <i><scp>X</scp>enopus laevis</i> . European Journal of Neuroscience, 2015, 41, 1263-1275.	2.6	6
11	A method for using direct injection of plasmid DNA to study cis-regulatory element activity in FO Xenopus embryos and tadpoles. Developmental Biology, 2015, 398, 11-23.	2.0	6
12	c-Jun N-Terminal Kinase Phosphorylation of Heterogeneous Nuclear Ribonucleoprotein K Regulates Vertebrate Axon Outgrowth via a Posttranscriptional Mechanism. Journal of Neuroscience, 2013, 33, 14666-14680.	3.6	31
13	Heterogeneous Nuclear Ribonucleoprotein K, an RNA-Binding Protein, Is Required for Optic Axon Regeneration in <i>Xenopus laevis</i> . Journal of Neuroscience, 2012, 32, 3563-3574.	3.6	40
14	Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis. European Journal of Neuroscience, 2011, 33, 9-25.	2.6	57
15	hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis. Development (Cambridge), 2011, 138, 3079-3090.	2.5	49
16	Regulation of Cytoskeletal Composition in Neurons: Transcriptional and Post-transcriptional Control in Development, Regeneration, and Disease. Advances in Neurobiology, 2011, , 559-602.	1.8	4
17	Post-transcriptional control of neurofilaments: New roles in development, regeneration and neurodegenerative disease. Trends in Neurosciences, 2010, 33, 27-37.	8.6	84
18	Transcriptional and translational dynamics of light neurofilament subunit RNAs during Xenopus laevis optic nerve regeneration. Brain Research, 2009, 1250, 27-40.	2.2	13

Ben G Szaro

#	Article	IF	CITATIONS
19	Dynamic endogenous association of neurofilament mRNAs with K-homology domain ribonucleoproteins in developing cerebral cortex. Brain Research, 2008, 1189, 33-42.	2.2	26
20	A crucial role for hnRNP K in axon development in <i>Xenopus laevis</i> . Development (Cambridge), 2008, 135, 3125-3135.	2.5	49
21	A living cell-based biosensor utilizing G-protein coupled receptors: Principles and detection methods. Biosensors and Bioelectronics, 2007, 22, 3230-3237.	10.1	19
22	Post-transcriptional control of neurofilaments in development and disease. Experimental Cell Research, 2007, 313, 2088-2097.	2.6	37
23	Neurofilament content is correlated with branch length in developing collateral branches of Xenopus spinal cord neurons. Neuroscience Letters, 2006, 403, 283-287.	2.1	9
24	Regeneration of descending projections in Xenopus laevis tadpole spinal cord demonstrated by retrograde double labeling. Brain Research, 2006, 1088, 68-72.	2.2	21
25	Microfabricated devices for bio-applications. , 2005, , .		2
26	Phylogenetically Conserved Binding of Specific K Homology Domain Proteins to the 3′-Untranslated Region of the Vertebrate Middle Neurofilament mRNA. Journal of Biological Chemistry, 2004, 279, 49680-49688.	3.4	37
27	Performing Functional Studies of Xenopus laevis Intermediate Filament Proteins Through Injection of Macromolecules into Early Embryos. Methods in Cell Biology, 2004, 78, 673-701.	1.1	8
28	Study of cell secretion using MEMS-based arrays. , 2004, , .		2
29	Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons. Journal of Comparative Neurology, 2003, 461, 262-275.	1.6	31
30	Loss of Neurofilaments Alters Axonal Growth Dynamics. Journal of Neuroscience, 2001, 21, 9655-9666.	3.6	59
31	Differential expression and localization of neuronal intermediate filament proteins within newly developing neurites in dissociated cultures ofXenopus laevis embryonic spinal cord. Cytoskeleton, 2001, 49, 16-32.	4.4	33
32	Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons. Journal of Comparative Neurology, 2000, 423, 512-531.	1.6	42
33	Structure, biological activity of the upstream regulatory sequence, and conserved domains of a middle molecular mass neurofilament gene of Xenopus laevis. Molecular Brain Research, 2000, 82, 35-51.	2.3	12
34	Sequence and expression patterns of two forms of the middle molecular weight neurofilament protein (NF-M) of Xenopus laevis. Molecular Brain Research, 1997, 48, 229-242.	2.3	17
35	Xefiltin, a new low molecular weight neuronal intermediate filament protein ofXenopus laevis, shares sequence features with goldfish gefiltin and mammalian ?-internexin and differs in expression from XNIF and NF-L. Journal of Comparative Neurology, 1997, 377, 351-364.	1.6	27
36	Xefiltin, aXenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration. Journal of Neurobiology, 1997, 33, 811-824.	3.6	27

Ben G Szaro

#	Article	IF	CITATIONS
37	Effects of Intermediate Filament Disruption on the Early Development of the Peripheral Nervous System ofXenopus laevis. Developmental Biology, 1996, 179, 197-211.	2.0	19
38	Maturation of neurites in mixed cultures of spinal cord neurons and muscle cells fromXenopus laevis embryos followed with antibodies to neurofilament proteins. Journal of Neurobiology, 1994, 25, 1235-1248.	3.6	18
39	The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve ofXenopus laevis. Journal of Comparative Neurology, 1994, 343, 158-172.	1.6	38
40	Inhibition of axonal development after injection of neurofilament antibodies into aXenopus laevis embryo. Journal of Comparative Neurology, 1991, 308, 576-585.	1.6	38
41	Spatial and temporal expression of phosphorylated and non-phosphorylated forms of neurofilament proteins in the developing nervous system of Xenopus laevis. Developmental Brain Research, 1989, 48, 87-103.	1.7	72
42	Identities, antigenic determinants, and topographic distributions of neurofilament proteins in the nervous systems of adult frogs and tadpoles ofXenopus laevis. Journal of Comparative Neurology, 1988, 273, 344-358.	1.6	36
43	Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system. Developmental Brain Research, 1988, 43, 207-224.	1.7	57
44	Chapter 9 Changes in Axonal Transport and Glial Proteins during Optic Nerve Regeneration in Xenopus laevis. Current Topics in Developmental Biology, 1987, 21, 217-254.	2.2	6
45	Effect of tetraploidy on dendritic branching in neurons and glial cells of the frog,Xenopus laevis. Journal of Comparative Neurology, 1987, 258, 304-316.	1.6	33
46	Regulation in the neural plate ofXenopus laevis demonstrated by genetic markers. The Journal of Experimental Zoology, 1985, 234, 117-129.	1.4	14
47	Axonal transport of [35S]Methionine labeled proteins in Xenopus optic nerve: Phases of transport and the effects of nerve crush on protein patterns. Brain Research, 1984, 297, 337-355.	2.2	6