Liguang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2770405/publications.pdf

Version: 2024-02-01

218677 168389 3,079 69 26 53 h-index citations g-index papers 81 81 81 2296 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society, 2020, 101, E303-E322.	3.3	573
2	Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bulletin of the American Meteorological Society, 2019, 100, 1987-2007.	3.3	326
3	Tropical Cyclone Damages in China 1983–2006. Bulletin of the American Meteorological Society, 2009, 90, 489-496.	3.3	316
4	The NUIST Earth System ModelÂ(NESM) versionÂ3: description and preliminary evaluation. Geoscientific Model Development, 2018, 11, 2975-2993.	3.6	135
5	A Potential Vorticity Tendency Diagnostic Approach for Tropical Cyclone Motion*. Monthly Weather Review, 2000, 128, 1899-1911.	1.4	124
6	Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. Journal of Geophysical Research, 2010, 115 , .	3.3	115
7	Westward shift of western North Pacific tropical cyclogenesis. Geophysical Research Letters, 2015, 42, 1537-1542.	4.0	78
8	Assessing the influence of the ENSO on tropical cyclone prevailing tracks in the western North Pacific. Advances in Atmospheric Sciences, 2010, 27, 1361-1371.	4.3	73
9	Modulation of Northwest Pacific Tropical Cyclone Genesis by the Intraseasonal Variability. Journal of the Meteorological Society of Japan, 2015, 93, 81-97.	1.8	61
10	Observational Analysis of Tropical Cyclone Formation Associated with Monsoon Gyres. Journals of the Atmospheric Sciences, 2013, 70, 1023-1034.	1.7	60
11	A Numerical Study of Hurricane Erin (2001). Part I: Model Verification and Storm Evolution. Journals of the Atmospheric Sciences, 2006, 63, 65-86.	1.7	58
12	Analysis of the influence of Saharan air layer on tropical cyclone intensity using AIRS/Aqua data. Geophysical Research Letters, 2009, 36, .	4.0	55
13	Interannual Changes of Tropical Cyclone Intensity in the Western North Pacific. Journal of the Meteorological Society of Japan, 2011, 89, 243-253.	1.8	55
14	Influence of Tropical Indian Ocean Warming and ENSO on Tropical Cyclone Activity over the Western North Pacific. Journal of the Meteorological Society of Japan, 2012, 90, 127-144.	1.8	52
15	Effects of Convective Heating on Movement and Vertical Coupling of Tropical Cyclones: A Numerical Study*. Journals of the Atmospheric Sciences, 2001, 58, 3639-3649.	1.7	50
16	Typhoon Track Changes Associated with Global Warming. Journal of Climate, 2011, 24, 3748-3752.	3.2	50
17	Sudden Tropical Cyclone Track Changes over the Western North Pacific: A Composite Study. Monthly Weather Review, 2013, 141, 2597-2610.	1.4	43
18	Increasing duration of tropical cyclones over China. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	40

#	Article	IF	CITATIONS
19	Prevalence of tornado-scale vortices in the tropical cyclone eyewall. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8307-8310.	7.1	35
20	Inter-decadal shift of the prevailing tropical cyclone tracks over the western North Pacific and its mechanism study. Meteorology and Atmospheric Physics, 2014, 125, 89-101.	2.0	33
21	Re-examination of tropical cyclone formation in monsoon troughs over the western North Pacific. Advances in Atmospheric Sciences, 2015, 32, 924-934.	4.3	33
22	Observational Analysis of Sudden Tropical Cyclone Track Changes in the Vicinity of the East China Sea. Journals of the Atmospheric Sciences, 2011, 68, 3012-3031.	1.7	31
23	Changes in Tropical Cyclone Rainfall in China. Journal of the Meteorological Society of Japan, 2013, 91, 585-595.	1.8	31
24	What Caused the Unprecedented Absence of Western North Pacific Tropical Cyclones in July 2020?. Geophysical Research Letters, 2021, 48, e2020GL092282.	4.0	31
25	Revisiting the steering principal of tropical cyclone motion in a numerical experiment. Atmospheric Chemistry and Physics, 2016, 16, 14925-14936.	4.9	29
26	Characteristics of tropical cyclone extreme precipitation and its preliminary causes in Southeast China. Meteorology and Atmospheric Physics, 2019, 131, 613-626.	2.0	29
27	Influence of future tropical cyclone track changes on their basin-wide intensity over the western North Pacific: Downscaled CMIP5 projections. Advances in Atmospheric Sciences, 2015, 32, 613-623.	4.3	28
28	Dominant Role of the Ocean Mixed Layer Depth in the Increased Proportion of Intense Typhoons During 1980–2015. Earth's Future, 2018, 6, 1518-1527.	6.3	26
29	A Comparison of Convective Raindrop Size Distributions in the Eyewall and Spiral Rainbands of Typhoon Lekima (2019). Geophysical Research Letters, 2020, 47, e2020GL090729.	4.0	26
30	Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM). Advances in Atmospheric Sciences, 2015, 32, 585-600.	4.3	24
31	Future Changes of the Monsoon Trough: Sensitivity to Sea Surface Temperature Gradient and Implications for Tropical Cyclone Activity. Earth's Future, 2018, 6, 919-936.	6.3	23
32	Distinct Raindrop Size Distributions of Convective Inner―and Outerâ€Rainband Rain in Typhoon Maria (2018). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032482.	3.3	23
33	Movement and Vertical Coupling of Adiabatic Baroclinic Tropical Cyclones*. Journals of the Atmospheric Sciences, 2001, 58, 1801-1814.	1.7	22
34	Variable Raindrop Size Distributions in Different Rainbands Associated With Typhoon Fitow (2013). Journal of Geophysical Research D: Atmospheres, 2019, 124, 12262-12281.	3.3	22
35	Influences of tropical cyclones on China during 1965–2004. Advances in Atmospheric Sciences, 2008, 25, 417-426.	4.3	20
36	Tornado-scale vortices in the tropical cyclone boundary layer: numerical simulation with the WRF–LES framework. Atmospheric Chemistry and Physics, 2019, 19, 2477-2487.	4.9	20

#	Article	IF	CITATIONS
37	Idealized numerical simulations of tropical cyclone formation associated with monsoon gyres. Advances in Atmospheric Sciences, 2014, 31, 305-315.	4.3	19
38	Unusual growth in intense typhoon occurrences over the Philippine Sea in September after the mid-2000s. Climate Dynamics, 2017, 48, 1893-1910.	3.8	19
39	Observational relationship of climatologic beta drift with largeâ€scale environmental flows. Geophysical Research Letters, 2009, 36, .	4.0	17
40	Comparison of atmospheric infrared sounder temperature and relative humidity profiles with NASA African Monsoon Multidisciplinary Analyses (NAMMA) dropsonde observations. Journal of Geophysical Research, 2009, 114, .	3.3	17
41	Rapid weakening of Typhoon Chanâ€Hom (2015) in a monsoon gyre. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9508-9520.	3.3	17
42	Projection of North Pacific Tropical Upper-Tropospheric Trough in CMIP5 Models: Implications for Changes in Tropical Cyclone Formation Locations. Journal of Climate, 2018, 31, 761-774.	3.2	16
43	Abrupt breakdown of the predictability of early season typhoon frequency at the beginning of the twenty-first century. Climate Dynamics, 2019, 52, 3809-3822.	3.8	16
44	Is there a quiescent typhoon season over the western North Pacific following a strong El Ni $\tilde{A}\pm 0$ event?. International Journal of Climatology, 2019, 39, 61-73.	3.5	16
45	A Seesaw Variability in Tropical Cyclone Genesis between the Western North Pacific and the North Atlantic Shaped by Atlantic Multidecadal Variability. Journal of Climate, 2022, 35, 2479-2489.	3.2	16
46	Comparisons of Four Methods for Tropical Cyclone Center Detection in a High-Resolution Simulation. Journal of the Meteorological Society of Japan, 2020, 98, 379-393.	1.8	15
47	Impacts of Three Gorges Dam on Regional Circulation: A Numerical Simulation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7813-7824.	3. 3	14
48	Tropical Cyclone Intensity Change in the Western North Pacific: Downscaling from IPCC AR4 Experiments. Journal of the Meteorological Society of Japan, 2012, 90, 223-233.	1.8	14
49	Modulation of convectively coupled equatorial Rossby wave on the western North Pacific tropical cyclones activity. International Journal of Climatology, 2018, 38, 932-948.	3.5	13
50	Recent decrease in genesis productivity of tropical cloud clusters over the Western North Pacific. Climate Dynamics, 2019, 52, 5819-5831.	3.8	13
51	Role of ENSO in the interannual relationship between Tibetan Plateau winter snow cover and Northwest Pacific tropical cyclone genesis frequency. Science China Earth Sciences, 2016, 59, 2009-2021.	5.2	12
52	Simulation of Extreme Updrafts in the Tropical Cyclone Eyewall. Advances in Atmospheric Sciences, 2020, 37, 781-792.	4.3	12
53	Multi-scale interactions of equatorial waves associated with tropical cyclogenesis over the western North Pacific. Climate Dynamics, 2019, 52, 3023-3038.	3.8	10
54	Stormâ€Scale and Fineâ€Scale Boundary Layer Structures of Tropical Cyclones Simulated With the WRFâ€LES Framework. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035511.	3.3	10

#	Article	IF	CITATIONS
55	Insensitivity of the Summer South Asian High Intensity to a Warming Tibetan Plateau in Modern Reanalysis Datasets. Journal of Climate, 2017, 30, 3009-3024.	3.2	9
56	Consistent Late Onset of the Western North Pacific Tropical Cyclone Season Following major El Niño Events. Journal of the Meteorological Society of Japan, 2019, 97, 673-688.	1.8	8
57	Climatology and trends of tropical cyclone high wind in mainland China: 1959–2011. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12378-12393.	3.3	7
58	Numerical Study of the Influences of a Monsoon Gyre on Intensity Changes of Typhoon Chan-Hom (2015). Advances in Atmospheric Sciences, 2018, 35, 567-579.	4.3	6
59	Inter-decadal change of the lagged inter-annual relationship between local sea surface temperature and tropical cyclone activity over the western North Pacific. Theoretical and Applied Climatology, 2018, 134, 707-720.	2.8	6
60	Dual-polarization radar retrieval during Typhoon Lekima (2019): Seeking the best-fitting shape–slope relationship depending on the differential–horizontal reflectivity relationship. Atmospheric Research, 2022, 267, 105978.	4.1	5
61	Negative Pressure Perturbations Associated With Tornadoâ€Scale Vortices in the Tropical Cyclone Boundary Layer. Geophysical Research Letters, 2021, 48, e2020GL091339.	4.0	4
62	High-Wind Drag Coefficient Based on the Tropical Cyclone Simulated With the WRF-LES Framework. Frontiers in Earth Science, $2021, 9, .$	1.8	3
63	Evolution of the Moat Associated with the Secondary Eyewall Formation in a Simulated Tropical Cyclone. Journals of the Atmospheric Sciences, 2021, 78, 4021-4035.	1.7	3
64	Fine-Scale Structures in the Mid-Level Eyewall of Super Typhoon Rammasun (2014) Simulated With the WRF-LES Framework. Frontiers in Earth Science, 2022, 9, .	1.8	3
65	Azimuthal Variations of the Convective-scale Structure in a Simulated Tropical Cyclone Principal Rainband. Advances in Atmospheric Sciences, 2020, 37, 1239-1255.	4.3	2
66	An Abrupt Slowdown of Late Season Tropical Cyclone over the Western North Pacific in the Early 1980s. Journal of the Meteorological Society of Japan, 2021, , .	1.8	2
67	A mechanism for long-term changes of Atlantic tropical cyclone intensity. Climate Dynamics, 2011, 36, 1851-1864.	3.8	1
68	Re-examination of trends related to tropical cyclone activity over the western North Pacific basin. Advances in Atmospheric Sciences, 2011, 28, 699-708.	4.3	1
69	Wind Gusts Associated with Tornado-Scale Vortices in the Tropical Cyclone Boundary Layer: A Numerical Simulation. Frontiers in Earth Science, 0, 10 , .	1.8	0