Tomás Chacón Rebollo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2770189/publications.pdf

Version: 2024-02-01

103 papers 967 citations

15 h-index 525886 27 g-index

109 all docs

109 docs citations

109 times ranked 580 citing authors

#	Article	IF	CITATIONS
1	Numerical Analysis of a Finite Element Approximation to a Level Set Model for Free-Surface Flows. Computational Methods in Applied Mathematics, 2022, 22, 155-179.	0.4	2
2	Low-Rank Approximations for Parametric Non-Symmetric Elliptic Problems. Frontiers in Physics, 2022, 10, .	1.0	1
3	A cure for instabilities due to advection-dominance in POD solution to advection-diffusion-reaction equations. Journal of Computational Physics, 2021, 425, 109916.	1.9	9
4	Data-driven reduced order modeling based on tensor decompositions and its application to air-wall heat transfer in buildings. SeMA Journal, 2021, 78, 213-232.	1.0	1
5	On the computation of Proper Generalized Decomposition modes of parametric elliptic problems. SeMA Journal, 2020, 77, 59-72.	1.0	3
6	Anisotropic VMS solution of advection–diffusion problems by spectral approximation of sub-grid scales. Journal of Computational and Applied Mathematics, 2020, 380, 112959.	1.1	2
7	Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height. Computers and Mathematics With Applications, 2020, 80, 973-989.	1.4	11
8	Low Rank Approximation of Multidimensional Data. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2019, , 187-250.	0.3	3
9	A Petrov–Galerkin multilayer discretization to second order elliptic boundary value problems. Computers and Mathematics With Applications, 2019, 77, 3068-3086.	1.4	O
10	On the computation of the stabilized coefficients for the 1D spectral VMS method. SeMA Journal, 2018, 75, 573-590.	1.0	3
11	A High-Order Local Projection Stabilization Method for Natural Convection Problems. Journal of Scientific Computing, 2018, 74, 667-692.	1.1	14
12	Assessment of self-adapting local projection-based solvers for laminar and turbulent industrial flows. Journal of Mathematics in Industry, 2018, 8 , .	0.7	1
13	Computational Modeling of Gurney Flaps and Microtabs by POD Method. Energies, 2018, 11, 2091.	1.6	33
14	A three-dimensional model for two coupled turbulent fluids: numerical analysis of a finite element approximation. IMA Journal of Numerical Analysis, 2018, 38, 1927-1958.	1.5	1
15	A New Algorithm of Proper Generalized Decomposition for Parametric Symmetric Elliptic Problems. SIAM Journal on Mathematical Analysis, 2018, 50, 5426-5445.	0.9	9
16	The VMS workshop series. SeMA Journal, 2018, 75, 569-571.	1.0	0
17	Recursive POD Expansion for the Advection-Diffusion-Reaction Equation. Communications in Computational Physics, 2018, 24, .	0.7	4
18	A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows. Archives of Computational Methods in Engineering, 2017, 24, 115-164.	6.0	66

#	Article	IF	Citations
19	Error bounds in high-order Sobolev norms for POD expansions of parameterized transient temperatures. Comptes Rendus Mathematique, 2017, 355, 432-438.	0.1	1
20	On a Certified Smagorinsky Reduced Basis Turbulence Model. SIAM Journal on Numerical Analysis, 2017, 55, 3047-3067.	1.1	37
21	A Self-adapting LPS Solver for Laminar and Turbulent Fluids in Industry and Hydrodynamic Flows. Mathematics in Industry, 2017, , 561-568.	0.1	1
22	Analysis of a Coupled Fluid-Structure Model with Applications to Hemodynamics. SIAM Journal on Numerical Analysis, 2016, 54, 994-1019.	1.1	14
23	Analysis of a Full Space–Time Discretization of the Navier–Stokes Equations by a Local Projection Stabilization Method. IMA Journal of Numerical Analysis, 2016, , drw048.	1.5	7
24	Error bounds for POD expansions of parameterized transient temperatures. Computer Methods in Applied Mechanics and Engineering, 2016, 305, 501-511.	3.4	5
25	Recursive POD expansion for reaction-diffusion equation. Advanced Modeling and Simulation in Engineering Sciences, 2016, 3, .	0.7	3
26	Finite Element Approximation of an Unsteady Projection-Based VMS Turbulence Model with Wall Laws. Lecture Notes in Computational Science and Engineering, 2015, , 47-73.	0.1	4
27	Tool Box. , 2015, , 43-117.		O
28	A reduced discrete inf-sup condition in <i>L</i> ^p for incompressible flows and application. ESAIM: Mathematical Modelling and Numerical Analysis, 2015, 49, 1219-1238.	0.8	2
29	Finite Element Discretization of the Stokes and Navier-Stokes Equations with Boundary Conditions on the Pressure. SIAM Journal on Numerical Analysis, 2015, 53, 1256-1279.	1.1	10
30	Numerical Analysis of Penalty Stabilized Finite Element Discretizations of Evolution Navier–Stokes Equations. Journal of Scientific Computing, 2015, 63, 885-912.	1.1	8
31	Numerical analysis of a finite element projection-based VMS turbulence model with wall laws. Computer Methods in Applied Mechanics and Engineering, 2015, 285, 379-405.	3.4	17
32	A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D advection–diffusion equations. Computer Methods in Applied Mechanics and Engineering, 2015, 285, 406-426.	3.4	6
33	Stabilization of a non standard FETI-DP mortar method for the Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis, 2014, 48, 285-304.	0.8	О
34	A Multilayer Method for the Hydrostatic Navier-Stokes Equations: A Particular Weak Solution. Journal of Scientific Computing, 2014, 60, 408-437.	1.1	28
35	Evolutionary NS-TKE Model. Modeling and Simulation in Science, Engineering and Technology, 2014, , 247-316.	0.4	О
36	Analysis of numerical stability of algebraic oceanic turbulent mixing layer models. Applied Mathematical Modelling, 2014, 38, 5836-5857.	2.2	1

#	Article	IF	Citations
37	Numerical approximation of the Smagorinsky turbulence model applied to the primitive equations of the ocean. Mathematics and Computers in Simulation, 2014, 99, 54-70.	2.4	10
38	Mathematical and Numerical Foundations of Turbulence Models and Applications. Modeling and Simulation in Science, Engineering and Technology, 2014, , .	0.4	56
39	A Projection-Based Variational Multiscale Model. Modeling and Simulation in Science, Engineering and Technology, 2014, , 393-416.	0.4	O
40	Numerical Experiments. Modeling and Simulation in Science, Engineering and Technology, 2014, , 445-480.	0.4	0
41	Finite Element Approximation of Evolution Smagorinsky Model. Modeling and Simulation in Science, Engineering and Technology, 2014, , 355-391.	0.4	O
42	Laws of the Turbulence by Similarity Principles. Modeling and Simulation in Science, Engineering and Technology, 2014, , 115-153.	0.4	0
43	Finite Element Approximation of the Steady Smagorinsky Model. Modeling and Simulation in Science, Engineering and Technology, 2014, , 317-353.	0.4	O
44	Numerical Approximation of NS-TKE Model. Modeling and Simulation in Science, Engineering and Technology, 2014, , 417-444.	0.4	0
45	The \$\$k-varepsilon\$\$ Model. Modeling and Simulation in Science, Engineering and Technology, 2014, , 83-114.	0.4	O
46	Analysis of the Continuous Steady NS-TKE Model. Modeling and Simulation in Science, Engineering and Technology, 2014, , 203-246.	0.4	0
47	Incompressible Navier–Stokes Equations. Modeling and Simulation in Science, Engineering and Technology, 2014, , 7-44.	0.4	O
48	A variational finite element model for large-eddy simulations of turbulent flows. Chinese Annals of Mathematics Series B, 2013, 34, 667-682.	0.2	6
49	A Bochev–Dohrmann–Gunzburger stabilization method for the primitive equations of the ocean. Applied Mathematics Letters, 2013, 26, 413-417.	1.5	1
50	A high order term-by-term stabilization solver for incompressible flow problems. IMA Journal of Numerical Analysis, 2013, 33, 974-1007.	1.5	32
51	Numerical investigation of algebraic oceanic turbulent mixing-layer models. Nonlinear Processes in Geophysics, 2013, 20, 945-954.	0.6	2
52	On the existence and asymptotic stability of solutions for unsteady mixing-layer models. Discrete and Continuous Dynamical Systems, 2013, 34, 421-436.	0.5	3
53	Error Analysis of a Subgrid Eddy Viscosity Multi-Scale Discretization of the Navier-Stokes Equations. SeMA Journal, 2012, 60, 51-74.	1.0	1
54	A Posteriori Analysis of a Positive Streamwise Invariant Discretization of a Convection-Diffusion Equation. Journal of Scientific Computing, 2012, 51, 349-374.	1.1	1

#	Article	IF	CITATIONS
55	Numerical solution of the Primitive Equations of the ocean by the Orthogonal Sub-Scales VMS method. Applied Numerical Mathematics, 2012, 62, 342-359.	1.2	6
56	On multilayer shallow water systems. , 2012, , 259-264.		0
57	Numerical Approximation of Convection-Diffusion Problems Through the PSI Method and Characteristics Method. Lecture Notes in Computational Science and Engineering, 2011, , 21-28.	0.1	O
58	An iterative procedure to solve a coupled two-fluids turbulence model. ESAIM: Mathematical Modelling and Numerical Analysis, 2010, 44, 693-713.	0.8	7
59	Numerical modelling of algebraic closure models of oceanic turbulent mixing layers. ESAIM: Mathematical Modelling and Numerical Analysis, 2010, 44, 1255-1277.	0.8	3
60	Analysis of a singular limit of boundary conditions for convection–diffusion equations. Asymptotic Analysis, 2010, 70, 141-154.	0.2	1
61	AUTOMATIC INSERTION OF A TURBULENCE MODEL IN THE FINITE ELEMENT DISCRETIZATION OF THE NAVIER–STOKES EQUATIONS. Mathematical Models and Methods in Applied Sciences, 2009, 19, 1139-1183.	1.7	12
62	A posteriori error analysis for two non-overlapping domain decomposition techniques. Applied Numerical Mathematics, 2009, 59, 1214-1236.	1.2	11
63	Stability of some turbulent vertical models for the ocean mixing boundary layer. Applied Mathematics Letters, 2008, 21, 128-133.	1.5	3
64	A FETI method with a mesh independent condition number for the iteration matrix. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 1410-1429.	3.4	7
65	Well-balanced finite volume schemes for 2D non-homogeneous hyperbolic systems. Application to the dam break of Aznalcóllar. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3932-3950.	3.4	15
66	Mortar finite element discretization of a model coupling Darcy and Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2008, 42, 375-410.	0.8	51
67	PSI Solution of Convection-Diffusion Equations with Data in L1., 2008, , 233-240.		0
68	A Domain Decomposition Method Derived from the Primal Hybrid Formulation for 2nd Order Elliptic Problems., 2008,, 365-372.		0
69	A Posteriori Error Analysis of Penalty Domain Decomposition Methods for Linear Elliptic Problems. , 2008, , 373-380.		0
70	NUMERICAL ANALYSIS OF THE PSI SOLUTION OF ADVECTION–DIFFUSION PROBLEMS THROUGH A PETROV–GALERKIN FORMULATION. Mathematical Models and Methods in Applied Sciences, 2007, 17, 1905-1936.	1.7	6
71	On Wellâ€Balanced Finite Volume Methods for Nonconservative Nonhomogeneous Hyperbolic Systems. SIAM Journal of Scientific Computing, 2007, 29, 1093-1126.	1.3	41
72	Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L 1. Numerische Mathematik, 2006, 105, 337-374.	0.9	36

#	Article	IF	Citations
73	Some Remarks on a Model for the Atmospheric Pressure in Ocean Dynamics. , 2006, , 279-287.		O
74	Study of a non-overlapping domain decomposition method: Steady Navier–Stokes equations. Applied Numerical Mathematics, 2005, 55, 100-124.	1.2	5
75	A numerical solver for the primitive equations of the ocean using term-by-term stabilization. Applied Numerical Mathematics, 2005, 55, 1-31.	1.2	9
76	A model for two coupled turbulent fluids Part III: Numerical approximation by finite elements. Numerische Mathematik, 2004, 98, 33-66.	0.9	14
77	A stabilized space-time discretization for the primitive equations in oceanography. Numerische Mathematik, 2004, 98, 427-475.	0.9	7
78	Numerical investigation of the regularity of the pressure for the primitive equations of the ocean. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 4457-4474.	3.4	1
79	Asymptotically balanced schemes for non-homogeneous hyperbolic systems – application to the Shallow Water equations. Comptes Rendus Mathematique, 2004, 338, 85-90.	0.1	26
80	Study of a non-overlapping domain decomposition method: Poisson and Stokes problems. Applied Numerical Mathematics, 2004, 48, 169-194.	1.2	12
81	A flux-splitting solver for shallow water equations with source terms. International Journal for Numerical Methods in Fluids, 2003, 42, 23-55.	0.9	15
82	A family of stable numerical solvers for the shallow water equations with source terms. Computer Methods in Applied Mechanics and Engineering, 2003, 192, 203-225.	3.4	62
83	Derivation of the k–ε model for locally homogeneous turbulence by homogenization techniques. Comptes Rendus Mathematique, 2003, 337, 431-436.	0.1	3
84	An entropy-correction free solver for non-homogeneous shallow water equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2003, 37, 755-772.	0.8	14
85	Numerical Schemes for 2D Shallow Water Equations with Variable Depth and Friction Effects. , 2003, , 506-511.		O
86	A model for two coupled turbulent fluids part I: Analysis of the system. Pakistan Journal of Medical Sciences, 2002, , 69-102.	0.4	10
87	A Model for Two Coupled Turbulent Fluids Part II: Numerical Analysis of a Spectral Discretization. SIAM Journal on Numerical Analysis, 2002, 40, 2368-2394.	1.1	21
88	A non-overlapping domain decomposition method for the Stokes equations via a penalty term on the interface. Comptes Rendus Mathematique, 2002, 334, 221-226.	0.1	5
89	On cubic spline approximations for the vortex patch problem. Applied Numerical Mathematics, 2001, 36, 359-387.	1.2	8
90	An analysis technique for stabilized finite element solution of incompressible flows. ESAIM: Mathematical Modelling and Numerical Analysis, 2001, 35, 57-89.	0.8	13

#	Article	IF	CITATIONS
91	A unified analysis of mixed and stabilized finite element solutions of Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2000, 182, 301-331.	3.4	8
92	An intrinsic analysis of existence of solutions for the hydrostatic approximation of Navier–Stokes equations. Comptes Rendus Mathematique, 2000, 330, 841-846.	0.5	19
93	Analysis of the hydrostatic approximation in oceanography with compression term. ESAIM: Mathematical Modelling and Numerical Analysis, 2000, 34, 525-537.	0.8	11
94	Existence d'une solution pour un mod \tilde{A} le de deux fluides turbulents coupl \tilde{A} ©s. Comptes Rendus Mathematique, 1999, 328, 993-998.	0.5	3
95	A term by term stabilization algorithm for finite element solution of incompressible flow problems. Numerische Mathematik, 1998, 79, 283-319.	0.9	45
96	Modelling of compressible flows with highly oscillating initial data by homogenization. Applied Numerical Mathematics, 1998, 26, 435-464.	1.2	2
97	An Efficient Two-Dimensional Vortex Method with Long Time Accuracy. SIAM Journal on Numerical Analysis, 1996, 33, 1425-1450.	1.1	1
98	A FULLY CONSERVATIVE NUMERICAL SCHEME FOR A KIND OF GENERALIZED 3D PERIODIC EULER EQUATIONS. International Journal of Numerical Methods for Heat and Fluid Flow, 1993, 3, 319-340.	1.6	0
99	A lagrangian finite element method for the 2-D euler equations. Communications on Pure and Applied Mathematics, 1990, 43, 735-767.	1.2	8
100	Oscillations Due to the Transport of Microstructures. SIAM Journal on Applied Mathematics, 1988, 48, 1128-1146.	0.8	12
101	Homogeneization of Slightly Compressible Inviscid Flows. North-Holland Mathematics Studies, 1987, , 387-395.	0.2	0
102	Finite element-particle method calculation of EHD plumes. , 0, , .		5
103	Numerical calculations of two-dimensional EHD plumes with finite element and particle methods. , 0, ,		6