
Luanne L Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2770164/publications.pdf Version: 2024-02-01

LIIANNE | DETEDS

#	Article	IF	CITATIONS
1	Rasa3 regulates stage-specific cell cycle progression in murine erythropoiesis. Blood Cells, Molecules, and Diseases, 2021, 87, 102524.	0.6	2
2	The Jackson Laboratory Nathan Shock Center: impact of genetic diversity on aging. GeroScience, 2021, 43, 2129-2137.	2.1	4
3	Fasting blood glucose as a predictor of mortality: Lost in translation. Cell Metabolism, 2021, 33, 2189-2200.e3.	7.2	29
4	circRNAs expressed in human peripheral blood are associated with human aging phenotypes, cellular senescence and mouse lifespan. GeroScience, 2020, 42, 183-199.	2.1	40
5	Cross-Species Analyses Identify Dlgap2 as a Regulator of Age-Related Cognitive Decline and Alzheimer's Dementia. Cell Reports, 2020, 32, 108091.	2.9	27
6	GeneticÂdifferences and longevityâ€related phenotypes influenceÂlifespan and lifespan variationÂin a sexâ€specific mannerÂin mice. Aging Cell, 2020, 19, e13263.	3.0	18
7	Differential effects of RASA3 mutations on hematopoiesis are profoundly influenced by genetic background and molecular variant. PLoS Genetics, 2020, 16, e1008857.	1.5	3
8	Increased Reactive Oxygen Species and Cell Cycle Defects Contribute to Anemia in the RASA3 Mutant Mouse Model scat. Frontiers in Physiology, 2018, 9, 689.	1.3	10
9	Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. Scientific Reports, 2018, 8, 12793.	1.6	14
10	Neomorphic effects of the <i>neonatal anemia</i> (<i>Nan-Eklf</i>) mutation contribute to deficits throughout development. Development (Cambridge), 2017, 144, 430-440.	1.2	19
11	MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are associated with median strain lifespan in mice. Scientific Reports, 2017, 7, 44620.	1.6	17
12	Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis. American Journal of Human Genetics, 2017, 100, 51-63.	2.6	45
13	Promiscuous DNA-binding of a mutant zinc finger protein corrupts the transcriptome and diminishes cell viability. Nucleic Acids Research, 2017, 45, 1130-1143.	6.5	33
14	Accessing Data Resources in the Mouse Phenome Database for Genetic Analysis of Murine Life Span and Health Span. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 170-177.	1.7	32
15	Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. Aging Cell, 2016, 15, 903-913.	3.0	79
16	Aging Research Using Mouse Models. Current Protocols in Mouse Biology, 2015, 5, 95-133.	1.2	92
17	RASA3 is a critical inhibitor of RAP1-dependent platelet activation. Journal of Clinical Investigation, 2015, 125, 1419-1432.	3.9	113
18	PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature, 2015, 522, 474-477.	13.7	117

#	Article	IF	CITATIONS
19	Genetic Regulation of Female Sexual Maturation and Longevity Through Circulating IGF1. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 817-826.	1.7	8
20	Effects of Housing Density in Five Inbred Strains of Mice. PLoS ONE, 2014, 9, e90012.	1.1	19
21	Alterations in thin filament length during postnatal skeletal muscle development and aging in mice. Frontiers in Physiology, 2014, 5, 375.	1.3	20
22	lron regulatory protein-1 protects against mitoferrin-1-deficient porphyria Journal of Biological Chemistry, 2014, 289, 13707.	1.6	0
23	Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria. Journal of Biological Chemistry, 2014, 289, 7835-7843.	1.6	34
24	TMEM14C is required for erythroid mitochondrial heme metabolism. Journal of Clinical Investigation, 2014, 124, 4294-4304.	3.9	62
25	Strain-specific variations in cation content and transport in mouse erythrocytes. Physiological Genomics, 2013, 45, 343-350.	1.0	8
26	Thescatmouse model highlights RASA3, a GTPase activating protein, as a key regulator of vertebrate erythropoiesis and megakaryopoiesis. Small GTPases, 2013, 4, 47-50.	0.7	4
27	Critical function for the Ras-GTPase activating protein RASA3 in vertebrate erythropoiesis and megakaryopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12099-12104.	3.3	31
28	Analysis of the Mobilities of Band 3 Populations Associated with Ankyrin Protein and Junctional Complexes in Intact Murine Erythrocytes. Journal of Biological Chemistry, 2012, 287, 4129-4138.	1.6	35
29	Strainâ€specific hyperkyphosis and megaesophagus in <i>Add1</i> null mice. Genesis, 2012, 50, 882-891.	0.8	3
30	Physiological effects of housing density on C57BL/6J mice over a 9-month period1. Journal of Animal Science, 2012, 90, 5182-5192.	0.2	26
31	RASA3 Plays a Critical, Conserved Role in Erythroid Differentiation. Blood, 2012, 120, 3186-3186.	0.6	2
32	Comparative proteomics reveals deficiency of SLC9A1 (sodium/hydrogen exchanger NHE1) in βâ€adducin null red cells. British Journal of Haematology, 2011, 154, 492-501.	1.2	9
33	A novel ENU-generated truncation mutation lacking the spectrin-binding and C-terminal regulatory domains of Ank1 models severe hemolytic hereditary spherocytosis. Experimental Hematology, 2011, 39, 305-320.e2.	0.2	21
34	Mice as a Mammalian Model for Research on the Genetics of Aging. ILAR Journal, 2011, 52, 4-15.	1.8	113
35	Lack of Protein 4.1G Causes Altered Expression and Localization of the Cell Adhesion Molecule Nectin-Like 4 in Testis and Can Cause Male Infertility. Molecular and Cellular Biology, 2011, 31, 2276-2286.	1.1	32
36	Identification of Distal <i>cis</i> -Regulatory Elements at Mouse Mitoferrin Loci Using Zebrafish Transgenesis. Molecular and Cellular Biology, 2011, 31, 1344-1356.	1.1	31

#	Article	IF	CITATIONS
37	Comparison of unrestrained plethysmography and forced oscillation for identifying genetic variability of airway responsiveness in inbred mice. Physiological Genomics, 2011, 43, 1-11.	1.0	31
38	Failure of Erythropoiesis and Megakaryocytopoiesis in RASA3 Mutant Scat Mice. Blood, 2011, 118, 680-680.	0.6	0
39	Analysis of novel sph (spherocytosis) alleles in mice reveals allele-specific loss of band 3 and adducin in α-spectrin–deficient red cells. Blood, 2010, 115, 1804-1814.	0.6	12
40	Tropomodulin 1-null mice have a mild spherocytic elliptocytosis with appearance of Tropomodulin 3 in red blood cells and disruption of the membrane skeleton. Blood, 2010, 116, 2590-2599.	0.6	78
41	Sequence variation at multiple loci influences red cell hemoglobin concentration. Blood, 2010, 116, e139-e149.	0.6	13
42	α- and β-Adducin polymorphisms affect podocyte proteins and proteinuria in rodents and decline of renal function in human IgA nephropathy. Journal of Molecular Medicine, 2010, 88, 203-217.	1.7	19
43	Targeted deletion of βIII spectrin impairs synaptogenesis and generates ataxic and seizure phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6022-6027.	3.3	72
44	Protein 4.2 Binds to the Carboxyl-terminal EF-hands of Erythroid \hat{I}_\pm -Spectrin in a Calcium- and Calmodulin-dependent Manner. Journal of Biological Chemistry, 2010, 285, 4757-4770.	1.6	22
45	Severe anemia in the <i>Nan</i> mutant mouse caused by sequence-selective disruption of erythroid Krüppel-like factor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15151-15156.	3.3	62
46	Targeted deletion of the γâ€adducin gene (<i>Add3</i>) in mice reveals differences in αâ€adducin interactions in erythroid and nonerythroid cells. American Journal of Hematology, 2009, 84, 354-361.	2.0	15
47	Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell, 2009, 8, 277-287.	3.0	359
48	Reduced DIDS-sensitive chloride conductance in Ae1â^'/â^' mouse erythrocytes. Blood Cells, Molecules, and Diseases, 2008, 41, 22-34.	0.6	10
49	A new mouse mutant for the LDL receptor identified using ENU mutagenesis. Journal of Lipid Research, 2008, 49, 2452-2462.	2.0	13
50	Relationships of dietary fat, body composition, and bone mineral density in inbred mouse strain panels. Physiological Genomics, 2008, 33, 26-32.	1.0	19
51	Characterization of glycolytic enzyme interactions with murine erythrocyte membranes in wild-type and membrane protein knockout mice. Blood, 2008, 112, 3900-3906.	0.6	87
52	Targeted deletion of α-adducin results in absent β- and γ-adducin, compensated hemolytic anemia, and lethal hydrocephalus in mice. Blood, 2008, 112, 4298-4307.	0.6	64
53	Combined Deletion of Mouse Dematin-Headpiece and β-Adducin Exerts a Novel Effect on the Spectrin-Actin Junctions Leading to Erythrocyte Fragility and Hemolytic Anemia. Journal of Biological Chemistry, 2007, 282, 4124-4135.	1.6	40
54	Distal Renal Tubular Acidosis in Mice Lacking the AE1 (Band3) Clâ^'/HCO3â^'Exchanger (slc4a1). Journal of the American Society of Nephrology: JASN, 2007, 18, 1408-1418.	3.0	127

#	Article	IF	CITATIONS
55	Spectrin unfolding mutations: kinks in the links. Blood, 2007, 109, 3133-3134.	0.6	Ο
56	Novel method for high-throughput phenotyping of sleep in mice. Physiological Genomics, 2007, 28, 232-238.	1.0	211
57	Multiple trait measurements in 43 inbred mouse strains capture the phenotypic diversity characteristic of human populations. Journal of Applied Physiology, 2007, 102, 2369-2378.	1.2	160
58	The mouse as a model for human biology: a resource guide for complex trait analysis. Nature Reviews Genetics, 2007, 8, 58-69.	7.7	270
59	Targeted Deletion of α-Adducin Results in Absent β-Adducin, Compensated Hemolytic Anemia, and Hydrocephalus in Mice Blood, 2007, 110, 141-141.	0.6	1
60	A mouse TRAPP-related protein is involved in pigmentation. Genomics, 2006, 88, 196-203.	1.3	25
61	Mitoferrin is essential for erythroid iron assimilation. Nature, 2006, 440, 96-100.	13.7	514
62	Quantitative trait loci for baseline erythroid traits. Mammalian Genome, 2006, 17, 298-309.	1.0	16
63	Role of hepatocyte nuclear factor 4α in control of blood coagulation factor gene expression. Journal of Molecular Medicine, 2006, 84, 334-344.	1.7	55
64	Effect of complete protein 4.1R deficiency on ion transport properties of murine erythrocytes. American Journal of Physiology - Cell Physiology, 2006, 291, C880-C886.	2.1	23
65	Absence of Erythroblast Macrophage Protein (Emp) Leads to Failure of Erythroblast Nuclear Extrusion. Journal of Biological Chemistry, 2006, 281, 20181-20189.	1.6	132
66	Evidence for a protective role of the Gardos channel against hemolysis in murine spherocytosis. Blood, 2005, 106, 1454-1459.	0.6	29
67	Quantitative trait loci for baseline white blood cell count, platelet count, and mean platelet volume. Mammalian Genome, 2005, 16, 749-763.	1.0	25
68	Impaired Synaptic Plasticity and Learning in Mice Lacking Â-Adducin, an Actin-Regulating Protein. Journal of Neuroscience, 2005, 25, 2138-2145.	1.7	69
69	N-Myristoyltransferase 1 Is Essential in Early Mouse Development. Journal of Biological Chemistry, 2005, 280, 18990-18995.	1.6	83
70	The C-Terminus of Alpha Spectrin Binds Protein 4.2 and Is Necessary for Optimal Spectrin-Actin Binding Blood, 2005, 106, 810-810.	0.6	1
71	Two New Recessive Mouse Mutations Cause Severe Hemolytic Anemia and Reveal Unexpected Interactions in the C-Terminus of α-Spectrin Blood, 2005, 106, 1662-1662.	0.6	0
72	Emp Null Mice Are Non-Viable and Exhibit Erythroid Differentiation Defect Blood, 2005, 106, 806-806.	0.6	2

#	Article	IF	CITATIONS
73	Implementing Large-Scale ENU Mutagenesis Screens in North America. Genetica, 2004, 122, 51-64.	0.5	81
74	Transgenic Cre expression mice for generation of erythroid-specific gene alterations. Genesis, 2004, 39, 1-9.	0.8	18
75	Identification of quantitative trait loci that modify the severity of hereditary spherocytosis in wan, a new mouse model of band-3 deficiency. Blood, 2004, 103, 3233-3240.	0.6	25
76	Reduced pigmentation (rp), a mouse model of Hermansky-Pudlak syndrome, encodes a novel component of the BLOC-1 complex. Blood, 2004, 104, 3181-3189.	0.6	48
77	Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nature Genetics, 2003, 34, 59-64.	9.4	132
78	A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood, 2003, 101, 4180-4188.	0.6	330
79	Mouse models of USH1C and DFNB18: phenotypic and molecular analyses of two new spontaneous mutations of the Ush1c gene. Human Molecular Genetics, 2003, 12, 3075-3086.	1.4	138
80	Selected Contribution: Effects of spaceflight on immunity in the C57BL/6 mouse. I. Immune population distributions. Journal of Applied Physiology, 2003, 94, 2085-2094.	1.2	70
81	Selected Contribution: Effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. Journal of Applied Physiology, 2003, 94, 2095-2103.	1.2	79
82	Ribosomal protein S19 expression during erythroid differentiation. Blood, 2003, 101, 318-324.	0.6	59
83	Evidence that the red cell skeleton protein 4.2 interacts with the Rh membrane complex member CD47. Blood, 2003, 101, 338-344.	0.6	110
84	Novel secreted isoform of adhesion molecule ICAM-4: potential regulator of membrane-associated ICAM-4 interactions. Blood, 2003, 101, 1790-1797.	0.6	41
85	Cappuccino, a mouse model of Hermansky-Pudlak syndrome, encodes a novel protein that is part of the pallidin-muted complex (BLOC-1). Blood, 2003, 101, 4402-4407.	0.6	79
86	Invited Review: Identifying new mouse models of cardiovascular disease: a review of high-throughput screens of mutagenized and inbred strains. Journal of Applied Physiology, 2003, 94, 1650-1659.	1.2	71
87	Large-scale, high-throughput screening for coagulation and hematologic phenotypes in mice*. Physiological Genomics, 2002, 11, 185-193.	1.0	76
88	Melanosome Morphologies in Murine Models of Hermansky–Pudlak Syndrome Reflect Blocks in Organelle Development. Journal of Investigative Dermatology, 2002, 119, 1156-1164.	0.3	66
89	Downeast Anemia (dea), a New Mouse Model of Severe Nonspherocytic Hemolytic Anemia Caused by Hexokinase (HKI) Deficiency. Blood Cells, Molecules, and Diseases, 2001, 27, 850-860.	0.6	20
90	Lutheran blood group glycoprotein and its newly characterized mouse homologue specifically bind α5 chain-containing human laminin with high affinity. Blood, 2001, 97, 312-320.	0.6	113

#	Article	IF	CITATIONS
91	Transcriptional repression and developmental functions of the atypical vertebrate GATA protein TRPS1. EMBO Journal, 2001, 20, 1715-1725.	3.5	113
92	A New Spectrin, βIV, Has a Major Truncated Isoform That Associates with Promyelocytic Leukemia Protein Nuclear Bodies and the Nuclear Matrix. Journal of Biological Chemistry, 2001, 276, 23974-23985.	1.6	55
93	The mouse adducin gene family: alternative splicing and chromosomal localization. Mammalian Genome, 2000, 11, 16-23.	1.0	18
94	Defects in the cappuccino (cno) gene on mouse chromosome 5 and human 4p cause Hermansky-Pudlak syndrome by an AP-3–independent mechanism. Blood, 2000, 96, 4227-4235.	0.6	45
95	Urocortin Expression in the Edinger-Westphal Nucleus Is Up-Regulated by Stress and Corticotropin-Releasing Hormone Deficiency1. Endocrinology, 2000, 141, 256-263.	1.4	134
96	Ermap, a gene coding for a novel erythroid specific adhesion/receptor membrane protein. Gene, 2000, 242, 337-345.	1.0	31
97	Immunolocalization of AE2 Anion Exchanger in Rat and Mouse Epididymis1. Biology of Reproduction, 1999, 61, 973-980.	1.2	47
98	Targeted disruption of the beta adducin gene (Add2) causes red blood cell spherocytosis in mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10717-10722.	3.3	109
99	cDNA sequence, genomic structure, and expression of the mouse dematin gene (Epb4.9). Mammalian Genome, 1999, 10, 1026-1029.	1.0	4
100	Protein 4.1R–deficient mice are viable but have erythroid membrane skeleton abnormalities. Journal of Clinical Investigation, 1999, 103, 331-340.	3.9	107
101	Mild spherocytosis and altered red cell ion transport in protein 4.2–null mice. Journal of Clinical Investigation, 1999, 103, 1527-1537.	3.9	72
102	cDNA sequence and chromosomal localization of mouse Dlgh3 gene adjacent to the BRCA1 tumor suppressor locus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1443, 211-216.	2.4	12
103	Spectrin localization in osteoclasts: Immunocytochemistry, cloning, and partial sequencing. Journal of Cellular Biochemistry, 1998, 71, 204-215.	1.2	4
104	Four Paralogous Protein 4.1 Genes Map to Distinct Chromosomes in Mouse and Human. Genomics, 1998, 54, 348-350.	1.3	54
105	A widely expressed ÂIII spectrin associated with Golgi and cytoplasmic vesicles. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14158-14163.	3.3	132
106	Distribution of epithelial ankyrin (Ank3) spliceoforms in renal proximal and distal tubules. American Journal of Physiology - Renal Physiology, 1998, 274, F129-F138.	1.3	28
107	Isoforms of Ankyrin-3 That Lack the NH2-terminal Repeats Associate with Mouse Macrophage Lysosomes. Journal of Cell Biology, 1997, 136, 1059-1070.	2.3	69
108	The Gene Encoding Protein 4.2 Is Distinct from the Mouse Platelet Storage Pool Deficiency Mutation Pallid. Genomics, 1997, 42, 532-535.	1.3	22

#	Article	IF	CITATIONS
109	Limatin (LIMAB1), an Actin-Binding LIM Protein, Maps to Mouse Chromosome 19 and Human Chromosome 10q25, a Region Frequently Deleted in Human Cancers. Genomics, 1997, 46, 291-293.	1.3	33
110	Murine Hn1 on Chromosome 11 is expressed in hemopoietic and brain tissues. Mammalian Genome, 1997, 8, 695-696.	1.0	25
111	Genetic Localization ofCd63,a Member of the Transmembrane 4 Superfamily, Reveals Two Distinct Loci in the Mouse Genome. Genomics, 1996, 35, 389-391.	1.3	12
112	Anion Exchanger 1 (Band 3) Is Required to Prevent Erythrocyte Membrane Surface Loss but Not to Form the Membrane Skeleton. Cell, 1996, 86, 917-927.	13.5	267
113	Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain Journal of Cell Biology, 1995, 130, 313-330.	2.3	150
114	The gene encoding the erythrocyte membrane skeleton protein dematin (Epb4.9) maps to mouse chromosome 14. Genomics, 1995, 26, 634-635.	1.3	4
115	The Exon-Intron Structure and Chromosomal Localization of the Mouse Macrophage Mannose Receptor Gene Mrcl: Identification of a Ricin-like Domain at the N-Terminus of the Receptor. Biochemical and Biophysical Research Communications, 1994, 198, 682-692.	1.0	28
116	The Ubiquitous Subunit of the Globin Enhancer-Binding Protein NF-E2 (Nfe2u) Maps to Mouse Chromosome 5. Genomics, 1994, 22, 490-491.	1.3	7
117	Mouse microcytic anaemia caused by a defect in the gene encoding the globin enhancer-binding protein NF-E2. Nature, 1993, 362, 768-770.	13.7	56
118	Novel inheritance of the murine severe combined anemia and thrombocytopenia (scat) phenotype. Cell, 1993, 74, 135-142.	13.5	44
119	Changing patterns in cytoskeletal mRNA expression and protein synthesis during murine erythropoiesis in vivo Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5749-5753.	3.3	29
120	Murine erythrocyte ankyrin cDNA: highly conserved regions of the regulatory domain. Mammalian Genome, 1992, 3, 281-285.	1.0	19
121	The murine pallid mutation is a platelet storage pool disease associated with the protein 4.2 (pallidin) gene. Nature Genetics, 1992, 2, 80-83.	9.4	96
122	Posterior Pituitary Lobectomy: Differential Elevation of Plasma Prolactin and Luteinizing Hormone in Estrous and Lactating Rats*. Endocrinology, 1982, 110, 1861-1865.	1.4	38
123	The Posterior Pituitary. Obstetrical and Gynecological Survey, 1982, 37, 185-186.	0.2	0
124	Dopamine in Hypophysial Portal Blood: Relationship to Circulating Prolactin in Pregnant and Lactating Rats*. Endocrinology, 1980, 106, 690-696.	1.4	77