
Yana Vaynzof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2769704/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	lodine Migration and its Effect on Hysteresis in Perovskite Solar Cells. Advanced Materials, 2016, 28, 2446-2454.	11.1	449
2	Efficient perovskite solar cells by metal ion doping. Energy and Environmental Science, 2016, 9, 2892-2901.	15.6	372
3	Performance and Stability Enhancement of Dye ensitized and Perovskite Solar Cells by Al Doping of TiO ₂ . Advanced Functional Materials, 2014, 24, 6046-6055.	7.8	330
4	A general approach to high-efficiency perovskite solar cells by any antisolvent. Nature Communications, 2021, 12, 1878.	5.8	209
5	23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Science Advances, 2021, 7, eabj7930.	4.7	205
6	Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films. Advanced Energy Materials, 2017, 7, 1700977.	10.2	183
7	Electronic Structure of Lowâ€Temperature Solutionâ€Processed Amorphous Metal Oxide Semiconductors for Thinâ€Film Transistor Applications. Advanced Functional Materials, 2015, 25, 1873-1885.	7.8	176
8	Polaron spin current transport in organic semiconductors. Nature Physics, 2014, 10, 308-313.	6.5	170
9	In situ measurement of exciton energy in hybrid singlet-fission solar cells. Nature Communications, 2012, 3, 1019.	5.8	165
10	Roomâ€Temperature Stimulated Emission and Lasing in Recrystallized Cesium Lead Bromide Perovskite Thin Films. Advanced Materials, 2019, 31, e1903717.	11.1	148
11	Inkjetâ€Printed Micrometerâ€Thick Perovskite Solar Cells with Large Columnar Grains. Advanced Energy Materials, 2020, 10, 1903184.	10.2	142
12	Improving the Photocatalytic Reduction of CO ₂ to CO through Immobilisation of a Molecular Re Catalyst on TiO ₂ . Chemistry - A European Journal, 2015, 21, 3746-3754.	1.7	141
13	The Future of Perovskite Photovoltaics—Thermal Evaporation or Solution Processing?. Advanced Energy Materials, 2020, 10, 2003073.	10.2	135
14	Preventing Interfacial Recombination in Colloidal Quantum Dot Solar Cells by Doping the Metal Oxide. ACS Nano, 2013, 7, 4210-4220.	7.3	132
15	Fractional deviations in precursor stoichiometry dictate the properties, performance and stability of perovskite photovoltaic devices. Energy and Environmental Science, 2018, 11, 3380-3391.	15.6	125
16	High performance planar perovskite solar cells by ZnO electron transport layer engineering. Nano Energy, 2017, 39, 400-408.	8.2	120
17	Doping of Organic Semiconductors Using Molybdenum Trioxide: a Quantitative Timeâ€Đependent Electrical and Spectroscopic Study. Advanced Functional Materials, 2011, 21, 1432-1441.	7.8	119
18	Surface-Directed Spinodal Decomposition in Poly[3-hexylthiophene] and C ₆₁ -Butyric Acid Methyl Ester Blends, ACS Nano, 2011, 5, 329-336.	7.3	113

#	Article	IF	CITATIONS
19	Immobilization of a Molecular Cobaloxime Catalyst for Hydrogen Evolution on a Mesoporous Metal Oxide Electrode. Angewandte Chemie - International Edition, 2012, 51, 12749-12753.	7.2	112
20	2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. CheM, 2021, 7, 1903-1916.	5.8	108
21	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
22	Shining Light on the Photoluminescence Properties of Metal Halide Perovskites. Advanced Functional Materials, 2020, 30, 1910004.	7.8	101
23	Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices. Applied Physics Letters, 2010, 97, .	1.5	100
24	Improved Open―Circuit Voltage in ZnO–PbSe Quantum Dot Solar Cells by Understanding and Reducing Losses Arising from the ZnO Conduction Band Tail. Advanced Energy Materials, 2014, 4, 1301544.	10.2	94
25	Solutionâ€Processed Zinc Oxide as Highâ€Performance Airâ€Stable Electron Injector in Organic Ambipolar Lightâ€Emitting Fieldâ€Effect Transistors. Advanced Functional Materials, 2010, 20, 3457-3465.	7.8	84
26	Highly Active Metastable Ruthenium Nanoparticles for Hydrogen Production through the Catalytic Hydrolysis of Ammonia Borane. Small, 2014, 10, 3145-3152.	5.2	81
27	Preparation of hierarchical C@MoS ₂ @C sandwiched hollow spheres for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 3987-3994.	5.2	81
28	Effect of Ion Migration-Induced Electrode Degradation on the Operational Stability of Perovskite Solar Cells. ACS Omega, 2018, 3, 10042-10047.	1.6	76
29	Probing the ionic defect landscape in halide perovskite solar cells. Nature Communications, 2020, 11, 6098.	5.8	75
30	Small grains as recombination hot spots in perovskite solar cells. Matter, 2021, 4, 1683-1701.	5.0	73
31	Gyroid‣tructured 3D ZnO Networks Made by Atomic Layer Deposition. Advanced Functional Materials, 2014, 24, 863-872.	7.8	68
32	Insights from Device Modeling of Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1260-1270.	8.8	68
33	Improved Performance and Stability of Inverted Organic Solar Cells with Sol–Gel Processed, Amorphous Mixed Metal Oxide Electron Extraction Layers Comprising Alkaline Earth Metals. Advanced Energy Materials, 2013, 3, 1428-1436.	10.2	67
34	Direct Observation of Photoinduced Bound Charge-Pair States at an Organic-Inorganic Semiconductor Interface. Physical Review Letters, 2012, 108, 246605.	2.9	66
35	Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation. ACS Nano, 2020, 14, 384-393.	7.3	58
36	Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nature Communications, 2022, 13, .	5.8	58

#	Article	IF	CITATIONS
37	Suppressing Recombination in Polymer Photovoltaic Devices via Energyâ€Level Cascades. Advanced Materials, 2013, 25, 4131-4138.	11.1	57
38	Effect of density of surface defects on photoluminescence properties in MAPbI ₃ perovskite films. Journal of Materials Chemistry C, 2019, 7, 5285-5292.	2.7	57
39	Stability of Quantum Dot Solar Cells: A Matter of (Life)Time. Advanced Energy Materials, 2021, 11, 2003457.	10.2	57
40	Switchedâ€On: Progress, Challenges, and Opportunities in Metal Halide Perovskite Transistors. Advanced Functional Materials, 2021, 31, 2101029.	7.8	57
41	Enhancing the Efficiency and Stability of Triple-Cation Perovskite Solar Cells by Eliminating Excess Pbl ₂ from the Perovskite/Hole Transport Layer Interface. ACS Applied Materials & Interfaces, 2020, 12, 54824-54832.	4.0	56
42	Sustainability in Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 1-17.	4.0	53
43	Structure Influence on Charge Transport in Naphthalenediimide–Thiophene Copolymers. Chemistry of Materials, 2014, 26, 6796-6804.	3.2	51
44	Ionic-Defect Distribution Revealed by Improved Evaluation of Deep-Level Transient Spectroscopy on Perovskite Solar Cells. Physical Review Applied, 2020, 13, .	1.5	50
45	Field-Assisted Exciton Dissociation in Highly Efficient PffBT4T-2OD:Fullerene Organic Solar Cells. Chemistry of Materials, 2018, 30, 2660-2667.	3.2	49
46	The effect of tuning the microstructure of TIPS-tetraazapentacene on the performance of solution processed thin film transistors. Journal of Materials Chemistry C, 2016, 4, 1194-1200.	2.7	44
47	Charge Dynamics in Solution-Processed Nanocrystalline CuInS ₂ Solar Cells. ACS Nano, 2015, 9, 5857-5867.	7.3	43
48	Thermally evaporated methylammonium-free perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 7725-7733.	2.7	42
49	Are Shockley-Read-Hall and ABC models valid for lead halide perovskites?. Nature Communications, 2021, 12, 3329.	5.8	41
50	Efficient n-Doping and Hole Blocking in Single-Walled Carbon Nanotube Transistors with 1,2,4,5-Tetrakis(tetramethylguanidino)ben-zene. ACS Nano, 2018, 12, 5895-5902.	7.3	40
51	Enhancement of electron injection into a light-emitting polymer from an aluminum oxide cathode modified by a self-assembled monolayer. Applied Physics Letters, 2008, 93, .	1.5	37
52	Improved electron injection in poly(9,9′-dioctylfluorene)- co-benzothiodiazole via cesium carbonate by means of coannealing. Applied Physics Letters, 2011, 98, 113306.	1.5	36
53	Structure formation in P3HT/F8TBT blends. Energy and Environmental Science, 2014, 7, 1725-1736.	15.6	36
54	Improved Performance of ZnO/Polymer Hybrid Photovoltaic Devices by Combining Metal Oxide Doping and Interfacial Modification. Journal of Physical Chemistry C, 2014, 118, 18945-18950.	1.5	36

#	Article	IF	CITATIONS
55	Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation. Advanced Energy Materials, 2019, 9, 1902145.	10.2	36
56	An Organic "Donorâ€Freeâ€Dye with Enhanced Openâ€Circuit Voltage in Solidâ€State Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400166.	10.2	35
57	Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends. ACS Nano, 2014, 8, 1647-1654.	7.3	35
58	Synthesis and Modeling of Uniform Complex Metal Oxides by Close-Proximity Atmospheric Pressure Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2015, 7, 10684-10694.	4.0	35
59	Ï€-Extended rigid triptycene-trisaroylenimidazoles as electron acceptors. Chemical Communications, 2016, 52, 1048-1051.	2.2	35
60	Preventing Hysteresis in Perovskite Solar Cells by Undoped Charge Blocking Layers. ACS Applied Energy Materials, 2018, 1, 676-683.	2.5	35
61	Revealing the internal luminescence quantum efficiency of perovskite films via accurate quantification of photon recycling. Matter, 2021, 4, 1391-1412.	5.0	35
62	Efficient Thermally Evaporated γ sPbI ₃ Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100299.	10.2	35
63	Rigid Conjugated Twisted Truxene Dimers and Trimers as Electron Acceptors. Angewandte Chemie - International Edition, 2016, 55, 3977-3981.	7.2	34
64	Inâ€Situ Switching from Barrierâ€Limited to Ohmic Anodes for Efficient Organic Optoelectronics. Advanced Functional Materials, 2014, 24, 3051-3058.	7.8	33
65	Energy Transfer to a Stable Donor Suppresses Degradation in Organic Solar Cells. Advanced Functional Materials, 2020, 30, 1907432.	7.8	32
66	Ruddlesden–Popperâ€Phase Hybrid Halide Perovskite/Smallâ€Molecule Organic Blend Memory Transistors. Advanced Materials, 2021, 33, e2003137.	11.1	32
67	Enhancing the Openâ€Circuit Voltage of Perovskite Solar Cells by up to 120 mV Using Ï€â€Extended Phosphoniumfluorene Electrolytes as Hole Blocking Layers. Advanced Energy Materials, 2019, 9, 1901257.	10.2	31
68	Hierarchical MoS ₂ –carbon porous nanorods towards atomic interfacial engineering for high-performance lithium storage. Journal of Materials Chemistry A, 2019, 7, 7553-7564.	5.2	31
69	<i>N</i> -Heteroacenes as a New Class of Non-Fullerene Electron Acceptors for Organic Bulk-Heterojunction Photovoltaic Devices. Solar Rrl, 2017, 1, 1700053.	3.1	30
70	Enhancing the Open-Circuit Voltage of Perovskite Solar Cells by Embedding Molecular Dipoles within Their Hole-Blocking Layer. ACS Applied Materials & Interfaces, 2020, 12, 3572-3579.	4.0	30
71	Compositional and Morphological Studies of Polythiophene/Polyflorene Blends in Inverted Architecture Hybrid Solar Cells. Advanced Functional Materials, 2012, 22, 2418-2424.	7.8	29
72	Oxygen-Induced Doping as a Degradation Mechanism in Highly Efficient Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 1943-1950.	2.5	29

#	Article	IF	CITATIONS
73	Effect of Crystal Grain Orientation on the Rate of Ionic Transport in Perovskite Polycrystalline Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 2490-2499.	4.0	29
74	Polymer Crystallization as a Tool To Pattern Hybrid Nanostructures: Growth of 12 nm ZnO Arrays in Poly(3-hexylthiophene). Nano Letters, 2013, 13, 4499-4504.	4.5	27
75	Improving Charge Separation across a Hybrid Oxide/Polymer Interface by Cs Doping of the Metal Oxide. Advanced Materials Interfaces, 2016, 3, 1500616.	1.9	27
76	Triptycene-Based Porous Metal-Assisted Salphen Organic Frameworks: Influence of the Metal lons on Formation and Gas Sorption. Chemistry of Materials, 2018, 30, 2781-2790.	3.2	27
77	Ligand dependent oxidation dictates the performance evolution of high efficiency PbS quantum dot solar cells. Sustainable Energy and Fuels, 2020, 4, 108-115.	2.5	27
78	White-light bias external quantum efficiency measurements of standard and inverted P3HT : PCBM photovoltaic cells. Journal Physics D: Applied Physics, 2012, 45, 415101.	1.3	26
79	Large-Scale Compositional and Electronic Inhomogeneities in CH ₃ NH ₃ PbI ₃ Perovskites and Their Effect on Device Performance. ACS Applied Energy Materials, 2018, 1, 2410-2416.	2.5	26
80	Quantifying the Damage Induced by X-ray Photoelectron Spectroscopy Depth Profiling of Organic Conjugated Polymers. ACS Applied Polymer Materials, 2019, 1, 1372-1381.	2.0	26
81	Effect of Injection Layer Sub-Bandgap States on Electron Injection in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2017, 9, 6220-6227.	4.0	25
82	Visualizing the Vertical Energetic Landscape in Organic Photovoltaics. Joule, 2019, 3, 2513-2534.	11.7	25
83	Electrical Pumping of Perovskite Diodes: Toward Stimulated Emission. Advanced Science, 2021, 8, e2101663.	5.6	25
84	Partial oxidation of the absorber layer reduces charge carrier recombination in antimony sulfide solar cells. Physical Chemistry Chemical Physics, 2017, 19, 1425-1430.	1.3	23
85	Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells. Nature Communications, 2022, 13, .	5.8	23
86	N,N′-Dihydrotetraazapentacenes (DHTA) in thin film transistors. Journal of Materials Chemistry C, 2015, 3, 1604-1609.	2.7	22
87	Role of PbSe Structural Stabilization in Photovoltaic Cells. Advanced Functional Materials, 2015, 25, 928-935.	7.8	21
88	A facile synthesis method and electrochemical studies of a hierarchical structured MoS ₂ /C-nanocomposite. RSC Advances, 2016, 6, 76084-76092.	1.7	21
89	Electronic and Magnetic Properties of Ni Nanoparticles Embedded in Various Organic Semiconductor Matrices. Journal of Physical Chemistry B, 2009, 113, 4565-4570.	1.2	20
90	Target Detection and Verification via Airborne Hyperspectral and High-Resolution Imagery Processing and Fusion. IEEE Sensors Journal, 2010, 10, 707-711.	2.4	20

#	Article	IF	CITATIONS
91	Side-group engineering: The influence of norbornadienyl substituents on the properties of ethynylated pentacene and tetraazapentacene. Organic Electronics, 2016, 33, 102-109.	1.4	20
92	Observation of oxygen vacancy migration in memory devices based on ZnO nanoparticles. Journal of Applied Physics, 2017, 121, .	1.1	20
93	The Gold(I)â€Mediated Domino Reaction to Fused Diphenyl Phosphoniumfluorenes: Mechanistic Consequences for Goldâ€Catalyzed Hydroarylations and Application in Solar Cells. Chemistry - A European Journal, 2018, 24, 7882-7889.	1.7	20
94	The Influence of Nanocrystal Aggregates on Photovoltaic Performance in Nanocrystal–Polymer Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1400139.	10.2	19
95	Vacuum-Induced Degradation of 2D Perovskites. Frontiers in Chemistry, 2020, 8, 66.	1.8	19
96	Tuning Spin Current Injection at Ferromagnet-Nonmagnet Interfaces by Molecular Design. Physical Review Letters, 2020, 124, 027204.	2.9	19
97	Temperature-Dependent Ionic Conductivity and Properties of Iodine-Related Defects in Metal Halide Perovskites. ACS Energy Letters, 2022, 7, 310-319.	8.8	19
98	Recent Advances in Hybrid Optoelectronics. Israel Journal of Chemistry, 2012, 52, 496-517.	1.0	18
99	Azaacene Dimers: Acceptor Materials with a Twist. Chemistry - A European Journal, 2020, 26, 412-418.	1.7	18
100	Energy Level Alignment in Ternary Organic Solar Cells. Advanced Electronic Materials, 2020, 6, 2000213.	2.6	18
101	Effects of photon recycling and scattering in high-performance perovskite solar cells. Science Advances, 2021, 7, eabj1363.	4.7	17
102	Current voltage relation of amorphous materials based pn diodes—the effect of degeneracy in organic polymers/molecules. Journal of Applied Physics, 2009, 106, .	1.1	16
103	Planar versus triptycenylene end-capped aroyleneimidazoles as electron acceptors in organic photovoltaics. Organic Chemistry Frontiers, 2017, 4, 834-838.	2.3	16
104	Triptycenylâ€phenazinoâ€ŧhiadiazole as acceptor in organic bulk-heterojunction solar cells. Organic Electronics, 2018, 57, 285-291.	1.4	16
105	Effect of Precursor Stoichiometry on the Performance and Stability of MAPbBr 3 Photovoltaic Devices. Energy Technology, 2020, 8, 1900737.	1.8	16
106	Roll-to-roll fabrication of highly transparent Ca:Ag top-electrode towards flexible large-area OLED lighting application. Flexible and Printed Electronics, 2021, 6, 035001.	1.5	16
107	Doped Organic Hole Extraction Layers in Efficient PbS and AgBiS ₂ Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 18750-18757.	4.0	16
108	Triptycene-trisaroyleneimidazoles as non-fullerene acceptors – Influence of side-chains on solubility, device morphology and performance. Organic Electronics, 2017, 47, 211-219.	1.4	15

#	Article	IF	CITATIONS
109	Metal-Assisted Salphen Organic Frameworks (MaSOFs) with Trinuclear Metal Units for Synergic Gas Sorption. Chemistry of Materials, 2019, 31, 6210-6223.	3.2	15
110	Highly efficient modulation doping: A path toward superior organic thermoelectric devices. Science Advances, 2022, 8, eabl9264.	4.7	15
111	Insights into the evaporation behaviour of FAI: material degradation and consequences for perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 3230-3239.	2.5	15
112	The effect of side-chain length on the microstructure and processing window of zone-cast naphthalene-based bispentalenes. Journal of Materials Chemistry C, 2019, 7, 13493-13501.	2.7	14
113	Fluorination of Organic Spacer Impacts on the Structural and Optical Response of 2D Perovskites. Frontiers in Chemistry, 2019, 7, 946.	1.8	14
114	The Challenge of Making the Same Device Twice in Perovskite Photovoltaics. ACS Energy Letters, 2022, 7, 1750-1757.	8.8	14
115	Liquid Exfoliation of Ni ₂ P ₂ S ₆ : Structural Characterization, Size-Dependent Properties, and Degradation. Chemistry of Materials, 2019, 31, 9127-9139.	3.2	13
116	Controlling the Microstructure and Porosity of Perovskite Films by Additive Engineering. ACS Applied Energy Materials, 2021, 4, 2990-2998.	2.5	13
117	Effect of Antisolvent Application Rate on Film Formation and Photovoltaic Performance of Methylammoniumâ€Free Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2100061.	2.8	13
118	Stability of Chemically Doped Nanotube–Silicon Heterojunction Solar Cells: Role of Oxides at the Carbon–Silicon Interface. ACS Applied Energy Materials, 2019, 2, 5925-5932.	2.5	12
119	Effect of Ozone on the Stability of Solution-Processed Anthradithiophene-Based Organic Field-Effect Transistors. Chemistry of Materials, 2014, 26, 3914-3919.	3.2	11
120	Simultaneous enhancement in open circuit voltage and short circuit current of hybrid organic–inorganic photovoltaics by inorganic interfacial modification. Journal of Materials Chemistry C, 2016, 4, 1111-1116.	2.7	11
121	Probing charge transfer states at organic and hybrid internal interfaces by photothermal deflection spectroscopy. Journal of Physics Condensed Matter, 2019, 31, 124001.	0.7	9
122	Long live the perovskite module. Nature Energy, 2021, 6, 578-579.	19.8	9
123	Optical Properties of Perovskiteâ€Organic Multiple Quantum Wells. Advanced Science, 2022, 9, .	5.6	9
124	Azaarene Dimers. Chemistry - A European Journal, 2019, 25, 7285-7291.	1.7	8
125	Dipolar hole-blocking layers for inverted perovskite solar cells: effects of aggregation and electron transport levels. JPhys Materials, 2020, 3, 025002.	1.8	8
126	Structural colors with embedded anti-counterfeit features fabricated by laser-based methods. Optics and Laser Technology, 2022, 151, 108012.	2.2	8

#	Article	IF	CITATIONS
127	Photophysics of Defect-Passivated Quasi-2D (PEA) ₂ PbBr ₄ Perovskite Using an Organic Small Molecule. ACS Energy Letters, 2022, 7, 2450-2458.	8.8	8
128	Doping induced performance enhancement in inverted small molecule organic photodiodes operating below 1V reverse bias - Towards compatibility with CMOS for imaging applications. Organic Electronics, 2019, 67, 1-9.	1.4	7
129	The Role of Additives in Suppressing the Degradation of Liquidâ€Exfoliated WS 2 Monolayers. Advanced Materials, 2021, 33, 2102883.	11.1	6
130	Temperature-dependent morphology-electron mobility correlations of naphthalene diimide-indacenodithiophene copolymers prepared <i>via</i> direct arylation polymerization. Materials Advances, 2021, 2, 7881-7890.	2.6	6
131	Oxygen-induced degradation in AgBiS ₂ nanocrystal solar cells. Nanoscale, 2022, 14, 3020-3030.	2.8	6
132	Preserving the stoichiometry of triple-cation perovskites by carrier-gas-free antisolvent spraying. Journal of Materials Chemistry A, 2022, 10, 19743-19749.	5.2	6
133	Surface dipole assisted charge carrier extraction in inverted architecture perovskite solar cells. Applied Physics Letters, 2021, 119, .	1.5	6
134	Triptycene–Bis(aroyleneimidazole)s as Nonâ€Fullerene Acceptors: The Missing Links. ChemPlusChem, 2017, 82, 1390-1395.	1.3	5
135	Influence of synthetic pathway, molecular weight and side chains on properties of indacenodithiophene-benzothiadiazole copolymers made by direct arylation polycondensation. Journal of Materials Chemistry C, 2021, 9, 4597-4606.	2.7	5
136	Laser printed metal halide perovskites. JPhys Materials, 2020, 3, 034010.	1.8	5
137	Electroluminescence from Solution-Processed Pinhole-Free Nanometer-Thickness Layers of Conjugated Polymers. Nano Letters, 2018, 18, 5382-5388.	4.5	4
138	How Photoelectron Spectroscopy and Quantum Chemical Studies Can Help Understanding the Magnetic Properties of Molecules: An Example from the Class of Cu(II)â~Bis(oxamato) Complexes. Journal of Physical Chemistry B, 2009, 113, 10051-10054.	1.2	3
139	Monolayer-enriched production of Au-decorated WS2 Nanosheets via Defect Engineering. MRS Advances, 2018, 3, 2435-2440.	0.5	3
140	Dimeric Phenazinothiadiazole Acceptors in Bulk Heterojunction Solar Cells. Organic Materials, 2021, 03, 168-173.	1.0	3
141	Spatial Distribution of Solar Cell Parameters in Multigrain Halide-Perovskite Films: A Device Model Perspective. ACS Applied Energy Materials, 2021, 4, 8709-8714.	2.5	3
142	Charge Separation: Improving Charge Separation across a Hybrid Oxide/Polymer Interface by Cs Doping of the Metal Oxide (Adv. Mater. Interfaces 7/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	1
143	Solar Cells: Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films (Adv. Energy Mater. 20/2017). Advanced Energy Materials, 2017, 7, .	10.2	1
144	Organic Solar Cells: Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation (Adv. Energy Mater. 47/2019). Advanced Energy Materials, 2019, 9, 1970185.	10.2	1

#	Article	IF	CITATIONS
145	Editors' choice collection on organic photovoltaics: back in the game. Materials Advances, 2021, 2, 1111-1112.	2.6	1
146	Editors' choice collection on organic photovoltaics: back in the game. Journal of Materials Chemistry C, 2021, 9, 1124-1125.	2.7	1
147	Excitonic Materials for Hybrid Solar Cells and Energy Efficient Lighting. , 2011, , .		0
148	The Gold(I)-Mediated Domino Reaction to Fused Diphenyl Phosphoniumfluorenes: Mechanistic Consequences for Gold-Catalyzed Hydroarylations and Application in Solar Cells. Chemistry - A European Journal, 2018, 24, 7785-7785.	1.7	0
149	What affects the reproducibility of perovskite photovoltaic devices?. , 0, , .		0
150	Excitation pulse repetition rate variation method for studying carrier recombination kinetics in perovskite thin films. , 0, , .		0
151	Modelling Self-Absorption Induced Red-Shift of the Photoluminescence of Perovskite Thin Films to Estimate the Internal Photoluminescence Quantum Efficiency and Escape Probability. , 0, , .		0
152	Small Grains as Recombination Hot Spots in Perovskite Photovoltaics. , 0, , .		0
153	A Hybrid Approach to Efficient All-Inorganic Perovskite Solar Cells. , 0, , .		0
154	23.7% Efficient Inverted Perovskite Solar Cells by Dual Interfacial Modification. , 0, , .		0
155	A Hybrid Approach to Efficient All-Inorganic Perovskite Solar Cells. , 0, , .		0
156	Hot Carrier Cooling Dynamics in Lead Halide Perovskite Nanomaterials. , 0, , .		0