List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2769427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of electronic structure, morphological features, optical, colorimetric, and supercapacitor electrode properties of CoWO4 crystals. Materials Science for Energy Technologies, 2022, 5, 125-144.	1.0	8
2	CuWO4 MnWO4 heterojunction thin film with improved photoelectrochemical and photocatalytic properties using simulated solar irradiation. Journal of Solid State Electrochemistry, 2022, 26, 997-1011.	1.2	11
3	Electronic structure, optical and sonophotocatalytic properties of spindle-like CaWO4 microcrystals synthesized by the sonochemical method. Journal of Alloys and Compounds, 2021, 855, 157377.	2.8	14
4	An investigation of photovoltaic devices based on <i>p</i> â€type <scp>Cu₂O</scp> and <i>n</i> â€type <scp>γâ€WO₃</scp> junction through an electrolyte solution containing a redox pair. International Journal of Energy Research, 2021, 45, 2797-2809.	2.2	2
5	Phytochemical, physicochemical, microbiological study and anticholinesterase activity of Ginkgo biloba L. and Bacopa monnieri L. used in phytotherapy. Research, Society and Development, 2021, 10, e39010313480.	0.0	2
6	Microwave-assisted hydrothermal synthesis of CuWO4-palygorskite nanocomposite for enhanced visible photocatalytic response. Journal of Alloys and Compounds, 2021, 863, 158731.	2.8	29
7	Structure, Morphology Features and Photocatalytic Properties of α-Ag2WO4 Nanocrystals-modified Palygorskite Clay. Journal of Photocatalysis, 2021, 2, 114-129.	0.4	9
8	Structural Refinement, Morphological Features, and Optical, Photo- and Sonophotocatalytic Properties of (Ca1-xSrx)WO4 Synthesized by the Sonochemical Method. Journal of Photocatalysis, 2021, 2, 147-164.	0.4	2
9	Effect of the pH pre-adjustment on the formation of In2W3O12 and In6WO12 powders: Cluster coordination and optical band gap. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2020, 59, 2-14.	0.9	Ο
10	Hydrothermal synthesis, structural characterization and photocatalytic properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>β</mml:mi>-Ag2MoO4 microcrystals: Correlation between experimental and theoretical data. Arabian Journal of Chemistry, 2020, 13, 2806-2825.</mml:math 	2.3	33
11	Effect of the applied potential condition on the photocatalytic properties of Fe2O3 WO3 heterojunction films. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2851-2862.	1.9	18
12	TiO2-based dye-sensitized solar cells prepared with bixin and norbixin natural dyes: Effect of 2,2'-bipyridine additive on the current and voltage. Optik, 2020, 218, 165236.	1.4	8
13	Effect of plasma nitriding time on the structural and mechanical properties of AlSlâ€O1 steel. Engineering Reports, 2020, 2, e12279.	0.9	1
14	Structural Refinement, Morphological Features, Optical Properties, and Adsorption Capacity of α-Ag2WO4 Nanocrystals/SBA-15 Mesoporous on Rhodamine B Dye. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3626-3645.	1.9	9
15	Surface-dependent properties of α-Ag2WO4: a joint experimental and theoretical investigation. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	19
16	Structural characterization, morphology, optical and colorimetric properties of NiWO4 crystals synthesized by the co-precipitation and polymeric precursor methods. Journal of Molecular Structure, 2020, 1221, 128774.	1.8	22
17	Electronic Structure, Morphological Aspects, and Photocatalytic Discoloration of Three Organic Dyes with MgWO4 Powders Synthesized by the Complex Polymerization Method. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2952-2970.	1.9	11
18	Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals. Electronic Materials Letters, 2019, 15, 645-653.	1.0	5

#	Article	IF	CITATIONS
19	Effect of different synthesis methods on the morphology, optical behavior, and superior photocatalytic performances of Ag3PO4 sub-microcrystals using white-light-emitting diodes. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 14-25.	2.0	29
20	Structural refinement, morphology and photocatalytic properties of β-(Ag2â^'2xZnx)MoO4 microcrystals synthesized by the sonochemical method. Journal of Materials Science: Materials in Electronics, 2019, 30, 1322-1344.	1.1	12
21	Improving the ozone gas-sensing properties of CuWO4 nanoparticles. Journal of Alloys and Compounds, 2018, 748, 411-417.	2.8	44
22	Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications. Journal of Solid State Electrochemistry, 2018, 22, 303-313.	1.2	69
23	Photocurrent Response and Progesterone Degradation by Employing WO ₃ Films Modified with Platinum and Silver Nanoparticles. ChemPlusChem, 2018, 83, 1153-1161.	1.3	19
24	Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals. Inorganic Chemistry Communication, 2018, 98, 34-40.	1.8	29
25	Investigation of charge recombination lifetime in $\hat{1}^3$ -WO3 films modified with AgO and PtO nanoparticles and its influence on photocurrent density. Ionics, 2018, 24, 3291-3297.	1.2	17
26	Structural evolution, growth mechanism and photoluminescence properties of CuWO4 nanocrystals. Ultrasonics Sonochemistry, 2017, 38, 256-270.	3.8	60
27	Synthesis, growth mechanism, optical properties and catalytic activity of ZnO microcrystals obtained via hydrothermal processing. RSC Advances, 2017, 7, 24263-24281.	1.7	55
28	Effect of metallic Ag growth on the electrical resistance of 3D flowerâ€like Ag ₄ V ₂ O ₇ crystals. Journal of the American Ceramic Society, 2017, 100, 2358-2362.	1.9	4
29	Facile preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochimica Acta, 2017, 256, 139-145.	2.6	57
30	Effect of sintering parameters using the central composite design method, electronic structure and physical properties of yttria-partially stabilized ZrO ₂ commercial ceramics. Materials Science-Poland, 2017, 35, 225-238.	0.4	1
31	Structural investigation and photoluminescent properties of ZnWO4:Dy3+ nanocrystals. Journal of Materials Science: Materials in Electronics, 2017, 28, 15466-15479.	1.1	18
32	Morphology and Optical Properties of SrWO4 Powders Synthesized by the Coprecipitation and Polymeric Precursor Methods. , 2017, , 131-154.		2
33	Disclosing the electronic structure and optical properties of Ag ₄ V ₂ O ₇ crystals: experimental and theoretical insights. CrystEngComm, 2016, 18, 6483-6491.	1.3	15
34	Acetone gas sensor based on α-Ag2WO4 nanorods obtained via a microwave-assisted hydrothermal route. Journal of Alloys and Compounds, 2016, 683, 186-190.	2.8	66
35	Synthesis, Characterization and Photoluminescent Properties of ZrO ₂ Nanocrystals. Materials Science Forum, 2016, 869, 35-39.	0.3	2
36	Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior. Applied Surface Science, 2016, 389, 1137-1147.	3.1	50

#	Article	IF	CITATIONS
37	Determination of Ethambutol in Aqueous Medium Using an Inexpensive Gold Microelectrode Array as Amperometric Sensor. Electroanalysis, 2016, 28, 985-989.	1.5	10
38	Synthesis and characterization of metastable β-Ag ₂ WO ₄ : an experimental and theoretical approach. Dalton Transactions, 2016, 45, 1185-1191.	1.6	24
39	Facet-dependent photocatalytic and antibacterial properties of α-Ag ₂ WO ₄ crystals: combining experimental data and theoretical insights. Catalysis Science and Technology, 2015, 5, 4091-4107.	2.1	123
40	Structural and optical properties of ZnS/MgNb2O6 heterostructures. Superlattices and Microstructures, 2015, 79, 180-192.	1.4	6
41	Rietveld refinement and optical properties of SrWO4:Eu3+ powders prepared by the non-hydrolytic sol-gel method. Journal of Rare Earths, 2015, 33, 113-128.	2.5	71
42	Rietveld refinement, cluster modelling, growth mechanism and photoluminescence properties of CaWO ₄ :Eu ³⁺ microcrystals. CrystEngComm, 2015, 17, 1654-1666.	1.3	77
43	A joint experimental and theoretical study on the electronic structure and photoluminescence properties of Al2(WO4)3 powders. Journal of Molecular Structure, 2015, 1081, 381-388.	1.8	22
44	Structural refinement, Raman spectroscopy, optical and electrical properties of (Ba1â^'xSrx)MoO4 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 8319-8335.	1.1	30
45	Structure, morphology, and optical properties of (Ca1â^'3x Eu2x)WO4 microcrystals. Electronic Materials Letters, 2015, 11, 193-197.	1.0	11
46	Structural, morphological and optical investigation of β-Ag ₂ MoO ₄ microcrystals obtained with different polar solvents. CrystEngComm, 2015, 17, 8207-8211.	1.3	44
47	Structure and electrochemical detection of xenobiotic micro-pollutant hydroquinone using CeO ₂ nanocrystals. RSC Advances, 2015, 5, 70558-70565.	1.7	11
48	Effect of different strontium precursors on the growth process and optical properties of SrWO4 microcrystals. Journal of Materials Science, 2015, 50, 8089-8103.	1.7	26
49	A novel ozone gas sensor based on one-dimensional (1D) α-Ag ₂ WO ₄ nanostructures. Nanoscale, 2014, 6, 4058-4062.	2.8	105
50	Potentiated Electron Transference in α-Ag ₂ WO ₄ Microcrystals with Ag Nanofilaments as Microbial Agent. Journal of Physical Chemistry A, 2014, 118, 5769-5778.	1.1	99
51	Structural refinement, optical and ferroelectric properties of microcrystalline Ba(Zr0.05Ti0.95)O3 perovskite. Current Applied Physics, 2014, 14, 708-715.	1.1	43
52	Photoluminescence properties of praseodymium doped cerium oxide nanocrystals. Ceramics International, 2014, 40, 4445-4453.	2.3	81
53	Polymyxin use as a risk factor for colonization or infection with polymyxinâ€resistant <i><scp>A</scp>cinetobacter baumannii</i> after liver transplantation. Transplant Infectious Disease, 2014, 16, 369-378.	0.7	15
54	Effect of Zn2+ ions on the structure, morphology and optical properties of CaWO4 microcrystals. Journal of Sol-Gel Science and Technology, 2014, 72, 648-654.	1.1	7

#	Article	IF	CITATIONS
55	Structural refinement, optical and electrical properties of [Ba1â^'x Sm2x/3](Zr0.05Ti0.95)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 3427-3439.	1.1	19
56	Experimental and Theoretical Investigations of Electronic Structure and Photoluminescence Properties of β-Ag ₂ MoO ₄ Microcrystals. Inorganic Chemistry, 2014, 53, 5589-5599.	1.9	133
57	Toward an Understanding of the Growth of Ag Filaments on α-Ag ₂ WO ₄ and Their Photoluminescent Properties: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 1229-1239.	1.5	124
58	Effect of polyvinyl alcohol on the shape, photoluminescence and photocatalytic properties of PbMoO4 microcrystals. Materials Science in Semiconductor Processing, 2014, 26, 425-430.	1.9	21
59	Local electronic structure, optical bandgap and photoluminescence (PL) properties of Ba(Zr0.75Ti0.25)O3 powders. Materials Science in Semiconductor Processing, 2013, 16, 1035-1045.	1.9	31
60	A combined theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron, 2013, 54, 13-25.	1.0	83
61	Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals. Scientific Reports, 2013, 3, 1676.	1.6	103
62	Rietveld refinement, morphology and optical properties of (Ba _{1â^²<i>x</i>} Sr <i>_x</i>)MoO ₄ crystals. Journal of Applied Crystallography, 2013, 46, 1434-1446.	1.9	49
63	Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution. Advanced Powder Technology, 2013, 24, 344-353.	2.0	89
64	Structural refinement, growth mechanism, infrared/Raman spectroscopies and photoluminescence properties of PbMoO4 crystals. Polyhedron, 2013, 50, 532-545.	1.0	63
65	Morphotropic phase boundary and electrical properties of 1â^x[Bi0.5Na0.5]TiO3 –xBa[Zr0.25Ti0.75]O3 lead-free piezoelectric ceramics. Ceramics International, 2013, 39, 4877-4886.	2.3	53
66	Structural investigation and improvement of photoluminescence properties in Ba(ZrxTi1â^'x)O3 powders synthesized by the solid state reaction method. Materials Chemistry and Physics, 2013, 142, 70-76.	2.0	17
67	Structural and dielectric properties of polyvinyl alcohol/barium zirconium titanate polymer–ceramic composite. Current Applied Physics, 2013, 13, 1490-1495.	1.1	43
68	Effect of Yttrium Doping in Barium Zirconium Titanate Ceramics: A Structural, Impedance, and Modulus Spectroscopy Study. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4296-4309.	1.1	25
69	Photoluminescence Properties of Nanocrystals. Journal of Nanomaterials, 2012, 2012, 1-2.	1.5	4
70	Structure, microstructure and dielectric properties of 100â^'x(Bi0.5Na0.5)TiO3â^'x[SrTiO3] composites ceramics. Applied Physics A: Materials Science and Processing, 2012, 109, 715-723.	1.1	71
71	Electronic structure, growth mechanism and photoluminescence of CaWO ₄ crystals. CrystEngComm, 2012, 14, 853-868.	1.3	200
72	Structure, microstructure, ferroelectric/electromechanical properties and retention characteristics of [Bi1â^'x Nb x]FeO3 thin films. Applied Physics A: Materials Science and Processing, 2012, 109, 703-714.	1.1	11

#	Article	IF	CITATIONS
73	Cluster Coordination and Photoluminescence Properties of α-Ag ₂ WO ₄ Microcrystals. Inorganic Chemistry, 2012, 51, 10675-10687.	1.9	168
74	Electronic structure and magnetic properties of FeWO4 nanocrystals synthesized by the microwave-hydrothermal method. Materials Characterization, 2012, 73, 124-129.	1.9	26
75	Structural refinement and photoluminescence properties of irregular cube-like (Ca1â^'xCux)TiO3 microcrystals synthesized by the microwave–hydrothermal method. Materials Chemistry and Physics, 2012, 136, 130-139.	2.0	24
76	Structural refinement, growth process, photoluminescence and photocatalytic properties of (Ba1-xPr2x/3)WO4 crystals synthesized by the coprecipitation method. RSC Advances, 2012, 2, 6438.	1.7	79
77	Effect of partial preferential orientation and distortions in octahedral clusters on the photoluminescence properties of FeWO4 nanocrystals. CrystEngComm, 2012, 14, 7127.	1.3	31
78	Structural refinement, optical and microwave dielectric properties of BaZrO3. Ceramics International, 2012, 38, 2129-2138.	2.3	104
79	Effect of different surfactants on the shape, growth and photoluminescence behavior of MnWO4 crystals synthesized by the microwave-hydrothermal method. Advanced Powder Technology, 2012, 23, 124-128.	2.0	35
80	β-ZnMoO4 microcrystals synthesized by the surfactant-assisted hydrothermal method: Growth process and photoluminescence properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 346-351.	2.3	66
81	Structural Refinement and Photoluminescence Properties of MnWO4 Nanorods Obtained by Microwave-Hydrothermal Synthesis. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 264-271.	1.9	41
82	Hierarchical Assembly of CaMoO ₄ Nano-Octahedrons and Their Photoluminescence Properties. Journal of Physical Chemistry C, 2011, 115, 5207-5219.	1.5	130
83	Presence of excited electronic state in CaWO4 crystals provoked by a tetrahedral distortion: An experimental and theoretical investigation. Journal of Applied Physics, 2011, 110, .	1.1	84
84	A Joint Experimental and Theoretical Study on the Nanomorphology of CaWO ₄ Crystals. Journal of Physical Chemistry C, 2011, 115, 20113-20119.	1.5	73
85	Structure, ferroelectric/magnetoelectric properties and leakage current density of (Bi0.85Nd0.15)FeO3 thin films. Journal of Alloys and Compounds, 2011, 509, 5326-5335.	2.8	73
86	Rietveld refinement, microstructure, conductivity and impedance properties of Ba[Zr0.25Ti0.75]O3 ceramic. Current Applied Physics, 2011, 11, 1282-1293.	1.1	104
87	Structural and morphological characteristics of (Pb1â°'x Sr x)TiO3 powders obtained by polymeric precursor method. Journal of Sol-Gel Science and Technology, 2010, 53, 21-29.	1.1	7
88	Structural and dielectric relaxor properties of yttrium-doped Ba(Zr0.25Ti0.75)O3 ceramics. Materials Chemistry and Physics, 2010, 121, 147-153.	2.0	47
89	Structure and optical properties of [Ba1–xY2x/3](Zr0.25Ti0.75)O3 powders. Solid State Sciences, 2010, 12, 1160-1167.	1.5	84
90	Structure and growth mechanism of CuO plates obtained by microwave-hydrothermal without surfactants. Advanced Powder Technology, 2010, 21, 197-202.	2.0	110

#	Article	IF	CITATIONS
91	Electronic structure and optical properties of BaMoO4 powders. Current Applied Physics, 2010, 10, 614-624.	1.1	150
92	Effect of Different Solvent Ratios (Water/Ethylene Glycol) on the Growth Process of CaMoO ₄ Crystals and Their Optical Properties. Crystal Growth and Design, 2010, 10, 4752-4768.	1.4	204
93	A new processing method of CaZn2(OH)6·2H2O powders: Photoluminescence and growth mechanism. Solid State Sciences, 2009, 11, 2173-2179.	1.5	34
94	Photoluminescence behavior in MgTiO3 powders with vacancy/distorted clusters and octahedral tilting. Materials Chemistry and Physics, 2009, 117, 192-198.	2.0	96
95	Reflux synthesis and hydrothermal processing of ZrO2 nanopowders at low temperature. Materials Chemistry and Physics, 2009, 117, 455-459.	2.0	56
96	Microstructure, dielectric properties and optical band gap control on the photoluminescence behavior of Ba[Zr0.25Ti0.75]O3 thin films. Journal of Sol-Gel Science and Technology, 2009, 49, 35-46.	1.1	81
97	Morphology and Photoluminescence of HfO2Obtained by Microwave-Hydrothermal. Nanoscale Research Letters, 2009, 4, 1371-1379.	3.1	65
98	First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites. Theoretical Chemistry Accounts, 2009, 124, 385-394.	0.5	69
99	(Sr,Tm)ZrO3 powders prepared by the polymeric precursor method: Synthesis, optical properties and morphological characteristics. Optical Materials, 2009, 31, 1134-1143.	1.7	23
100	Growth mechanism of octahedron-like BaMoO4 microcrystals processed in microwave-hydrothermal: Experimental observations and computational modeling. Particuology, 2009, 7, 353-362.	2.0	76
101	Photoluminescence property of powders prepared by solid state reaction and polymeric precursor method. Physica B: Condensed Matter, 2009, 404, 3341-3347.	1.3	44
102	Synthesis, growth process and photoluminescence properties of SrWO4 powders. Journal of Colloid and Interface Science, 2009, 330, 227-236.	5.0	141
103	Synthesis of (Ca,Nd)TiO3 powders by complex polymerization, Rietveld refinement and optical properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 1050-1059.	2.0	48
104	Improvement of fatigue resistance on La modified BiFeO3 thin films. Current Applied Physics, 2009, 9, 520-523.	1.1	52
105	NiTiO3 powders obtained by polymeric precursor method: Synthesis and characterization. Journal of Alloys and Compounds, 2009, 468, 327-332.	2.8	118
106	Intense blue and green photoluminescence emissions at room temperature in barium zirconate powders. Journal of Alloys and Compounds, 2009, 471, 253-258.	2.8	69
107	Photoluminescent behavior of BaWO4 powders processed in microwave-hydrothermal. Journal of Alloys and Compounds, 2009, 474, 195-200.	2.8	92
108	Structural and dielectric properties of Ba0.5Sr0.5(SnxTi1â^'x)O3 ceramics obtained by the soft chemical method. Journal of Alloys and Compounds, 2009, 477, 877-882.	2.8	33

LAéCIO S CAVALCANTE

#	Article	IF	CITATIONS
109	Synthesis and photoluminescence behavior of Bi4Ti3O12 powders obtained by the complex polymerization method. Journal of Alloys and Compounds, 2009, 478, 661-670.	2.8	47
110	Synthesis, Characterization, Anisotropic Growth and Photoluminescence of BaWO ₄ . Crystal Growth and Design, 2009, 9, 1002-1012.	1.4	115
111	Optical and dielectric relaxor behaviour of Ba(Zr _{0.25} Ti _{0.75})O ₃ ceramic explained by means of distorted clusters. Journal Physics D: Applied Physics, 2009, 42, 175414.	1.3	93
112	Morphology and Blue Photoluminescence Emission of PbMoO ₄ Processed in Conventional Hydrothermal. Journal of Physical Chemistry C, 2009, 113, 5812-5822.	1.5	171
113	Synthesis, characterization, structural refinement and optical absorption behavior of PbWO4 powders. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 18-25.	1.7	55
114	NiTiO3 nanoparticles encapsulated with SiO2 prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2008, 45, 151-155.	1.1	18
115	Sol–gel synthesis and characterization of Fe2O3·ÂCeO2 doped with Pr ceramic pigments. Journal of Sol-Gel Science and Technology, 2008, 47, 38-43.	1.1	17
116	Intense and broad photoluminescence at room temperature in structurally disordered Ba[Zr0.25Ti0.75]O3 powders: An experimental/theoretical correlation. Journal of Physics and Chemistry of Solids, 2008, 69, 1782-1789.	1.9	27
117	BaMoO4 powders processed in domestic microwave-hydrothermal: Synthesis, characterization and photoluminescence at room temperature. Journal of Physics and Chemistry of Solids, 2008, 69, 2674-2680.	1.9	100
118	Strong violet–blue light photoluminescence emission at room temperature in SrZrO3: Joint experimental and theoretical study. Acta Materialia, 2008, 56, 2191-2202.	3.8	132
119	SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties. Chemical Engineering Journal, 2008, 140, 632-637.	6.6	187
120	Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces. Chemical Engineering Journal, 2008, 143, 299-307.	6.6	188
121	Intense violet–blue photoluminescence in BaZrO3 powders: A theoretical and experimental investigation of structural order–disorder. Optics Communications, 2008, 281, 3715-3720.	1.0	52
122	Size effects of polycrystalline lanthanum modified Bi4Ti3O12 thin films. Materials Research Bulletin, 2008, 43, 158-167.	2.7	24
123	CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method. Materials Research Bulletin, 2008, 43, 771-775.	2.7	79
124	Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders. Solid State Sciences, 2008, 10, 1056-1061.	1.5	56
125	Strain and vacancy cluster behavior of vanadium and tungsten-doped Ba[Zr0.10Ti0.90]O3 ceramics. Applied Physics Letters, 2008, 92, .	1.5	27
126	Dependence of annealing time on structural and morphological properties of Ca(Zr0.05Ti0.95)O3 thin films. Journal of Alloys and Compounds, 2008, 453, 386-391.	2.8	5

#	Article	IF	CITATIONS
127	Dielectric properties of pure and lanthanum modified bismuth titanate thin films. Journal of Alloys and Compounds, 2008, 454, 66-71.	2.8	11
128	Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. Journal of Alloys and Compounds, 2008, 459, 537-542.	2.8	235
129	:W thin films obtained by chemical solution deposition: Morphological and ferroelectric characteristics. Journal of Alloys and Compounds, 2008, 461, 326-330.	2.8	3
130	Study of structural evolution and photoluminescent properties at room temperature of Ca(Zr,Ti)O3 powders. Journal of Alloys and Compounds, 2008, 464, 340-346.	2.8	25
131	Ferroelectric and dielectric properties of vanadium-doped Ba(Ti0.90Zr0.10)O3 ceramics. Journal of Alloys and Compounds, 2008, 466, L15-L18.	2.8	47
132	Experimental and theoretical correlation of very intense visible green photoluminescence in BaZrO3 powders. Journal of Applied Physics, 2008, 103, .	1.1	84
133	Nature of defects for bismuth layered thin films grown on Pt electrodes. Applied Physics Letters, 2007, 90, 082910.	1.5	19
134	Ferroelectric fatigue endurance of Bi4â^'xLaxTi3O12 thin films explained in terms of x-ray photoelectron spectroscopy. Journal of Applied Physics, 2007, 101, 084112.	1.1	25
135	Intense visible photoluminescence in Ba(Zr0.25Ti0.75)O3 thin films. Applied Physics Letters, 2007, 90, 011901.	1.5	61
136	Soft chemical deposition of BiFeO3 multiferroic thin films. Applied Physics Letters, 2007, 90, 052906.	1.5	63
137	Photoluminescent behavior of SrBi2Nb2O9 powders explained by means of β-Bi2O3 phase. Applied Physics Letters, 2007, 90, 261913.	1.5	34
138	Effect of annealing time on morphological characteristics of Ba(Zr,Ti)O3 thin films. Journal of Alloys and Compounds, 2007, 437, 269-273.	2.8	21
139	Ferroelectric characteristics of BiFeO3 thin films prepared via a simple chemical solution deposition. Journal of Applied Physics, 2007, 101, 074108.	1.1	57
140	Highly intense violet-blue light emission at room temperature in structurally disordered SrZrO3 powders. Applied Physics Letters, 2007, 90, 091906.	1.5	109
141	Understanding the origin of photoluminescence in disordered Ca0.60Sr0.40WO4: An experimental and first-principles study. Chemical Physics, 2007, 334, 180-188.	0.9	60
142	Impact of oxygen atmosphere on piezoelectric properties of CaBi2Nb2O9 thin films. Acta Materialia, 2007, 55, 4707-4712.	3.8	25
143	Combined experimental and theoretical investigations of the photoluminescent behavior of Ba(Ti,Zr)O3 thin films. Acta Materialia, 2007, 55, 6416-6426.	3.8	57
144	Domestic microwave oven adapted for fast heat treatment of Ba0.5Sr0.5(Ti0.8Sn0.2)O3 powders. Journal of Materials Processing Technology, 2007, 189, 316-319.	3.1	40

#	Article	IF	CITATIONS
145	Temperature dependence of dielectric properties for Ba(Zr0.25Ti0.75)O3 thin films obtained from the soft chemical method. Materials Chemistry and Physics, 2007, 105, 293-297.	2.0	30
146	Synthesis and characterization of CaBi4Ti4O15 thin films annealed by microwave and conventional furnaces. Solid State Sciences, 2007, 9, 756-760.	1.5	19
147	SrZrO3 powders obtained by chemical method: Synthesis, characterization and optical absorption behaviour. Solid State Sciences, 2007, 9, 1020-1027.	1.5	47
148	Ferroelectric and dielectric behaviour of Bi0.92La0.08FeO3 multiferroic thin films prepared by soft chemistry route. Journal of Sol-Gel Science and Technology, 2007, 44, 269-273.	1.1	25
149	Ferroelectric and dielectric properties of thin films grown by the soft chemical method. Journal of Solid State Chemistry, 2006, 179, 2972-2976.	1.4	25
150	Dielectric properties of Ca(Zr0.05Ti0.95)O3 thin films prepared by chemical solution deposition. Journal of Solid State Chemistry, 2006, 179, 3739-3743.	1.4	14
151	The role of structural order–disorder for visible intense photoluminescence in the BaZr0.5Ti0.5O3 thin films. Chemical Physics, 2005, 316, 260-266.	0.9	38
152	Reading at exposed surfaces: theoretical insights into photocatalytic activity of ZnWO4. , 0, 1, 1005.		20