Zhongwei Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2769229/zhongwei-chen-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

387	32,214	95	168
papers	citations	h-index	g-index
407	38,014 ext. citations	10.9	7.84
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
387	Evidence of Morphological Change in Sulfur Cathodes upon Irradiation by Synchrotron X-rays. <i>ACS Energy Letters</i> , 2022 , 7, 577-582	20.1	1
386	A MOF-Derivative Decorated Hierarchical Porous Host Enabling Ultrahigh Rates and Superior Long-Term Cycling of Dendrite-Free Zn Metal Anodes <i>Advanced Materials</i> , 2022 , e2110047	24	19
385	Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies <i>Chemical Society Reviews</i> , 2022 ,	58.5	8
384	Linker-Compensated Metal-Organic Framework with Electron Delocalized Metal Sites for Bifunctional Oxygen Electrocatalysis <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	10
383	Emerging Trends in Sustainable CO Management Materials Advanced Materials, 2022, e2201547	24	4
382	An improved capillary pressure model for coal seam gas reservoirs. <i>Journal of Natural Gas Science and Engineering</i> , 2022 , 104551	4.6	0
381	Frontispiece: Engineering Oversaturated Fe-N 5 Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60,	16.4	1
380	Effects of heterogenous interburden Young's modulus on permeability characteristics of underlying relieved coal seam: Implementation of damage-based permeability model. <i>Journal of Natural Gas Science and Engineering</i> , 2021 , 104317	4.6	1
379	Synergistic Binary Fe-Co Nanocluster Supported on Defective Tungsten Oxide as Efficient Oxygen Reduction Electrocatalyst in Zinc-Air Battery. <i>Advanced Science</i> , 2021 , 9, e2104237	13.6	6
378	Developing a new algorithm for numerical modeling of discrete fracture network (DFN) for anisotropic rock and percolation properties. <i>Journal of Petroleum Exploration and Production</i> , 2021 , 11, 839-856	2.2	1
377	Hierarchically Porous TiC MXene with Tunable Active Edges and Unsaturated Coordination Bonds for Superior Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2021 ,	16.7	10
376	Time-dependent coal permeability: Impact of gas transport from coal cleats to matrices. <i>Journal of Natural Gas Science and Engineering</i> , 2021 , 88, 103806	4.6	16
375	Coal permeability models for enhancing performance of clean gas drainage: A review. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 199, 108283	4.4	10
374	Baunal Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube Microspheres for High-Energy and Long-Lasting Lithium Bulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100497	21.8	16
373	Defect Engineering for Expediting Liß Chemistry: Strategies, Mechanisms, and Perspectives. <i>Advanced Energy Materials</i> , 2021 , 11, 2100332	21.8	52
372	Poroelastic solution of a wellbore in a swelling rock with non-hydrostatic stress field. <i>Journal of Rock Mechanics and Geotechnical Engineering</i> , 2021 ,	5.3	1
371	Multiple Fracture Growth in Modified Zipper Fracturing. <i>International Journal of Geomechanics</i> , 2021 , 21,	3.1	1

(2020-2021)

370	A Novel Design of High-Temperature Polymer Electrolyte Membrane Acetone Fuel Cell Sensor. Sensors and Actuators B: Chemical, 2021, 329, 129006	8.5	2
369	High-performance anion exchange membrane alkaline seawater electrolysis. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9586-9592	13	13
368	Localized Polysulfide Injector for the Activation of Bulk Lithium Sulfide. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2185-2189	16.4	14
367	Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. <i>Nature Communications</i> , 2021 , 12, 186	17.4	61
366	Hierarchical Micro-Nanoclusters of Bimetallic Layered Hydroxide Polyhedrons as Advanced Sulfur Reservoir for High-Performance Lithium-Sulfur Batteries. <i>Advanced Science</i> , 2021 , 8, 2003400	13.6	19
365	Reduction of N to NH by TiO-supported Ni cluster catalysts: a DFT study. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 16707-16717	3.6	3
364	Understanding competing effect between sorption swelling and mechanical compression on coal matrix deformation and its permeability. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2021 , 138, 104639	6	12
363	Design Zwitterionic Amorphous Conjugated Micro-/Mesoporous Polymer Assembled Nanotentacle as Highly Efficient Sulfur Electrocatalyst for Lithium-Sulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101926	21.8	10
362	Engineering Oversaturated Fe-N Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26622-26629	16.4	23
361	Enhancing anaerobic digestion using free nitrous acid: Identifying the optimal pre-treatment condition in continuous operation. <i>Water Research</i> , 2021 , 205, 117694	12.5	2
360	Recent Progress on High-Performance Cathode Materials for Zinc-Ion Batteries. <i>Small Structures</i> , 2021 , 2, 2000064	8.7	36
359	Thin Film Polyamide Nanocomposite Membrane Decorated by Polyphenol-Assisted TiCT MXene Nanosheets for Reverse Osmosis <i>ACS Applied Materials & amp; Interfaces</i> , 2021 ,	9.5	3
358	Quantifying the impact of capillary trapping on coal seam gas recovery. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 83, 103588	4.6	5
357	Preferentially Engineering FeN Edge Sites onto Graphitic Nanosheets for Highly Active and Durable Oxygen Electrocatalysis in Rechargeable Zn-Air Batteries. <i>Advanced Materials</i> , 2020 , 32, e2004900	24	94
356	Three-Dimensional Modeling of All-Solid-State Lithium-Ion Batteries Using Synchrotron Transmission X-ray Microscopy Tomography. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 100558	3.9	14
355	Insights into Multiphase Reactions during Self-Discharge of Li-S Batteries. <i>Chemistry of Materials</i> , 2020 , 32, 4518-4526	9.6	23
354	Two-Dimensional NiO@C-N Nanosheets Composite as a Superior Low-Temperature Anode Material for Advanced Lithium-/Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2020 , 7, 3616-3622	4.3	8
353	High Voltage Stability and Characterization of P2-Na0.66Mn1-yMgyO2 Cathode for Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2020 , 7, 3284-3290	4.3	5

352	Supramolecular preorganization effect to access single cobalt sites for enhanced photocatalytic hydrogen evolution and nitrogen fixation. <i>Chemical Engineering Journal</i> , 2020 , 394, 124822	14.7	9
351	Scaling Compressive Strength from Mini-cylinder Specimens of Sub-bituminous Coal. <i>Rock Mechanics and Rock Engineering</i> , 2020 , 53, 2839-2853	5.7	3
350	Constructing Safe and Durable High-Voltage P2 Layered Cathodes for Sodium Ion Batteries Enabled by Molecular Layer Deposition of Alucone. <i>Advanced Functional Materials</i> , 2020 , 30, 1910251	15.6	24
349	Superior performance of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119276	21.8	32
348	Stimulation Techniques of Coalbed Methane Reservoirs. <i>Geofluids</i> , 2020 , 2020, 1-23	1.5	12
347	Fast production of zincBexamethylenetetramine complex microflowers as an advanced sulfur reservoir for high-performance lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5062-5	i ∂ ∂9	7
346	Cationic and anionic redox in lithium-ion based batteries. <i>Chemical Society Reviews</i> , 2020 , 49, 1688-1705	58.5	84
345	Ni-Rich/Co-Poor Layered Cathode for Automotive Li-Ion Batteries: Promises and Challenges. <i>Advanced Energy Materials</i> , 2020 , 10, 1903864	21.8	119
344	Free nitrous acid pre-treatment enhances anaerobic digestion of waste activated sludge and rheological properties of digested sludge: A pilot-scale study. <i>Water Research</i> , 2020 , 172, 115515	12.5	21
343	Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook 2020 , 2, 6-43		136
342	Advanced Electrode Materials Comprising of Structure-Engineered Quantum Dots for High-Performance Asymmetric Micro-Supercapacitors. <i>Advanced Energy Materials</i> , 2020 , 10, 1903724	21.8	23
341	Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium-Sulfur Batteries. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3583-3592	16.4	95
340	Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure. <i>Small</i> , 2020 , 16, e1903315	11	23
339	Modelling of shaft based processes. <i>Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy</i> , 2020 , 129, 157-165	0.8	1
338	Predicting the radial heat transfer in the wellbore of cryogenic nitrogen fracturing: Insights into stimulating underground reservoir. <i>Energy Science and Engineering</i> , 2020 , 8, 582-591	3.4	1
337	Performance enhancement of horizontal underground-to-inseam gas drainage boreholes with double-phase-grouting sealing method for coal mining safety and clean gas resource. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 76, 103179	4.6	12
336	Hierarchical Defective Fe3-xC@C Hollow Microsphere Enables Fast and Long-Lasting LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2001165	15.6	85
335	Ternary Cross-Linked Multi-Functional Blended Polymers for High-Performance Silicon Anodes in Lithium-Ion Batteries. <i>ECS Meeting Abstracts</i> , 2020 , MA2020-02, 3807-3807	0	

(2020-2020)

334	New Concepts in Electrolytes. <i>Chemical Reviews</i> , 2020 , 120, 6783-6819	68.1	267
333	Shore hardness measurements of sub-bituminous coal microlithotypes. <i>International Journal of Coal Geology</i> , 2020 , 217, 103341	5.5	1
332	Engineering the Conductive Network of Metal Oxide-Based Sulfur Cathode toward Efficient and Longevous LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2002076	21.8	60
331	Promoting Ge Alloying Reaction via Heterostructure Engineering for High Efficient and Ultra-Stable Sodium-Ion Storage. <i>Advanced Science</i> , 2020 , 7, 2002358	13.6	14
330	Fast Charging Li-Ion Batteries for a New Era of Electric Vehicles. <i>Cell Reports Physical Science</i> , 2020 , 1, 100212	6.1	22
329	Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. <i>Chemical Society Reviews</i> , 2020 , 49, 5407-5445	58.5	121
328	A Near-Isotropic Proton-Conducting Porous Graphene Oxide Membrane. ACS Nano, 2020, 14, 14947-149	9 50 .7	5
327	Coupled multiscale-modeling of microwave-heating-induced fracturing in shales. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2020 , 136, 104520	6	9
326	d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. <i>Nature Communications</i> , 2020 , 11, 5858	17.4	49
325	A Combined Ordered Macro-Mesoporous Architecture Design and Surface Engineering Strategy for High-Performance Sulfur Immobilizer in Lithium-Sulfur Batteries. <i>Small</i> , 2020 , 16, e2001089	11	27
324	Regulating the Li-Solvation Structure of Ester Electrolyte for High-Energy-Density Lithium Metal Batteries. <i>Small</i> , 2020 , 16, e2004688	11	15
323	Applying low-salinity water to alter wettability in carbonate oil reservoirs: an experimental study. Journal of Petroleum Exploration and Production, 2020, 11, 451	2.2	2
322	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. <i>Chemical Society Reviews</i> , 2020 , 49, 8790-8839	58.5	153
321	Radial Permeability Measurements for Shale Using Variable Pressure Gradients. <i>Acta Geologica Sinica</i> , 2020 , 94, 269-279	0.7	2
320	Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2020 , 384, 123237	14.7	24
319	Testing Impact Load Cell Calculations of Material Fracture Toughness and Strength Using 3D-Printed Sandstone. <i>Geotechnical and Geological Engineering</i> , 2020 , 38, 1065-1096	1.5	4
318	The Current State of Aqueous Zn-Based Rechargeable Batteries. ACS Energy Letters, 2020, 5, 1665-1675	20.1	127
317	Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery. Nature Communications, 2020 , 11, 1952	17.4	93

316	A 'trimurti' heterostructured hybrid with an intimate CoO/CoxP interface as a robust bifunctional air electrode for rechargeable ZnBir batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9177-9184	13	39
315	Rational design of tailored porous carbon-based materials for CO2 capture. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20985-21003	13	84
314	Nitrogen-doped graphene-TiO N nanocomposite electrode for highly efficient capacitive deionization <i>RSC Advances</i> , 2019 , 9, 28186-28193	3.7	7
313	The use of short impact load cell to derive geomechanical properties of sub-bituminous coal and mudstone. <i>Journal of Natural Gas Science and Engineering</i> , 2019 , 72, 103018	4.6	2
312	Unravelling the influences of sewer-dosed iron salts on activated sludge properties with implications on settleability, dewaterability and sludge rheology. <i>Water Research</i> , 2019 , 167, 115089	12.5	14
311	A 3D ordered hierarchically porous non-carbon electrode for highly effective and efficient capacitive deionization. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15633-15639	13	30
310	3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage. <i>Advanced Energy Materials</i> , 2019 , 9, 1900673	21.8	21
309	Water sorptivity of unsaturated fractured sandstone: Fractal modeling and neutron radiography experiment. <i>Advances in Water Resources</i> , 2019 , 130, 172-183	4.7	12
308	Reassessment of coal permeability evolution using steady-state flow methods: The role of flow regime transition. <i>International Journal of Coal Geology</i> , 2019 , 211, 103210	5.5	47
307	Modelling and optimization of enhanced coalbed methane recovery using CO2/N2 mixtures. <i>Fuel</i> , 2019 , 253, 1114-1129	7.1	108
306	Improved Composite Solid Electrolyte through Ionic Liquid-Assisted Polymer Phase for Solid-State Lithium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A1785-A1792	3.9	14
305	Multidimensional Ordered Bifunctional Air Electrode Enables Flash Reactants Shuttling for High-Energy Flexible Zn-Air Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1900911	21.8	85
304	Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits: A review. <i>Chemical Engineering Research and Design</i> , 2019 , 127, 103-124	5.5	65
303	Phase evolution of conversion-type electrode for lithium ion batteries. <i>Nature Communications</i> , 2019 , 10, 2224	17.4	59
302	"Ship in a Bottle" Design of Highly Efficient Bifunctional Electrocatalysts for Long-Lasting Rechargeable Zn-Air Batteries. <i>ACS Nano</i> , 2019 , 13, 7062-7072	16.7	78
301	Rational Design of Environmental Benign OrganicIhorganic Hybrid as a Prospective Cathode for Stable High-Voltage Sodium Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 11464-11475	3.8	6
300	Anisotropic coal permeability estimation by determining cleat compressibility using mercury intrusion porosimetry and stressBtrain measurements. <i>International Journal of Coal Geology</i> , 2019 , 205, 75-86	5.5	23
299	A high performance wastewater-fed flow-photocatalytic fuel cell. <i>Journal of Power Sources</i> , 2019 , 425, 69-75	8.9	24

298	Application of Artificial Intelligence to State-of-Charge and State-of-Health Estimation of Calendar-Aged Lithium-Ion Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A605-A615	3.9	20
297	Layer-Based Heterostructured Cathodes for Lithium-Ion and Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1808522	15.6	61
296	Advances in fibre optic based geotechnical monitoring systems for underground excavations. <i>International Journal of Mining Science and Technology</i> , 2019 , 29, 229-238	7.1	19
295	Multifunctional Nano-Architecting of Si Electrode for High-Performance Lithium-Ion Battery Anode. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2776-A2783	3.9	3
294	Flow field characters near fracture entrance in supercritical carbon dioxide sand fracturing 2019 , 9, 999	-1009	9
293	A highly sensitive breathable fuel cell gas sensor with nanocomposite solid electrolyte. <i>Informa</i> Materily, 2019 , 1, 234-241	23.1	23
292	The influence of closed pores on the gas transport and its application in coal mine gas extraction. <i>Fuel</i> , 2019 , 254, 115605	7.1	16
291	Defect-Enriched Nitrogen Doped-Graphene Quantum Dots Engineered NiCo S Nanoarray as High-Efficiency Bifunctional Catalyst for Flexible Zn-Air Battery. <i>Small</i> , 2019 , 15, e1903610	11	61
2 90	Molecular Trapping Strategy To Stabilize Subnanometric Pt Clusters for Highly Active Electrocatalysis. <i>ACS Catalysis</i> , 2019 , 9, 11603-11613	13.1	19
289	Towards the development of a baseline for surface movement in the Surat Cumulative Management Area. <i>APPEA Journal</i> , 2019 , 59, 95	0.6	2
288	Impact of capillary trapping on CSG recovery: an overlooked phenomenon. APPEA Journal, 2019, 59, 343	3 0.6	3
287	Interaction of Cleat-Matrix on Coal Permeability from Experimental Observations and Numerical Analysis. <i>Geofluids</i> , 2019 , 2019, 1-15	1.5	2
286	A Stochastic Anisotropic Coal Permeability Model Using Mercury Intrusion Porosimetry, MIP and Stress-Strain Measurements 2019 ,		1
285	Characterizations of macroscopic deformation and particle crushing of crushed gangue particle material under cyclic loading: In solid backfilling coal mining. <i>Powder Technology</i> , 2019 , 343, 159-169	5.2	23
284	Zn-free MOFs like MIL-53(Al) and MIL-125(Ti) for the preparation of defect-rich, ultrafine ZnO nanosheets with high photocatalytic performance. <i>Applied Catalysis B: Environmental</i> , 2019 , 244, 719-73	37 ^{1.8}	44
283	Recent Progress in Electrically Rechargeable Zinc-Air Batteries. <i>Advanced Materials</i> , 2019 , 31, e1805230) 24	204
282	Evaluation of air blast parameters in block cave mining using particle flow code. <i>International Journal of Mining, Reclamation and Environment</i> , 2019 , 33, 87-101	2.2	5
281	Simulation of microwavel heating effect on coal seam permeability enhancement. <i>International Journal of Mining Science and Technology</i> , 2019 , 29, 785-789	7.1	21

2 80	Phosphorus and Nitrogen Centers in Doped Graphene and Carbon Nanotubes Analyzed through Solid-State NMR. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 6593-6601	3.8	27
279	Revisiting the Role of Polysulfides in Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2018 , 30, e1705590	24	291
278	Characterization of unsaturated diffusivity of tight sandstones using neutron radiography. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 124, 693-705	4.9	16
277	Batteries and fuel cells for emerging electric vehicle markets. <i>Nature Energy</i> , 2018 , 3, 279-289	62.3	1176
276	Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries. <i>Nature Communications</i> , 2018 , 9, 705	17.4	159
275	Role of multi-seam interaction on gas drainage engineering design for mining safety and environmental benefits: Linking coal damage to permeability variation. <i>Chemical Engineering Research and Design</i> , 2018 , 114, 310-322	5.5	25
274	Two-Dimensional Phosphorus-Doped Carbon Nanosheets with Tunable Porosity for Oxygen Reactions in Zinc-Air Batteries. <i>ACS Catalysis</i> , 2018 , 8, 2464-2472	13.1	129
273	Interpenetrating Triphase Cobalt-Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Long-Lasting Rechargeable ZnAir Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702900	21.8	183
272	Platinum-Palladium CoreBhell Nanoflower Catalyst with Improved Activity and Excellent Durability for the Oxygen Reduction Reaction. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701508	4.6	5
271	Controllable Urchin-Like NiCo2S4 Microsphere Synergized with Sulfur-Doped Graphene as Bifunctional Catalyst for Superior Rechargeable ZnAir Battery. <i>Advanced Functional Materials</i> , 2018 , 28, 1706675	15.6	160
270	Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. <i>Small</i> , 2018 , 14, 1702737	11	433
269	Effects of geomechanical properties of interburden on the damage-based permeability variation in the underlying coal seam. <i>Journal of Natural Gas Science and Engineering</i> , 2018 , 55, 42-51	4.6	8
268	Predicting Erosion-Induced Water Inrush of Karst Collapse Pillars Using Inverse Velocity Theory. <i>Geofluids</i> , 2018 , 2018, 1-18	1.5	22
267	Fluid Flow in Unconventional Gas Reservoirs. <i>Geofluids</i> , 2018 , 2018, 1-2	1.5	4
266	Conformal formation of Carbon-TiOX matrix encapsulating silicon for high-performance lithium-ion battery anode. <i>Journal of Power Sources</i> , 2018 , 399, 98-104	8.9	2
265	Li S- or S-Based Lithium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1801190	24	39
264	Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading. <i>Minerals (Basel, Switzerland)</i> , 2018 , 8, 244	2.4	20
263	Effects of Water Soaked Height on the Deformation and Crushing Characteristics of Loose Gangue Backfill Material in Solid Backfill Coal Mining. <i>Processes</i> , 2018 , 6, 64	2.9	18

(2018-2018)

262	New Interpretation of the Performance of Nickel-Based Air Electrodes for Rechargeable ZincAir Batteries. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 20153-20166	3.8	19
261	Hollow Multivoid Nanocuboids Derived from Ternary Nitoffe Prussian Blue Analog for Dual-Electrocatalysis of Oxygen and Hydrogen Evolution Reactions. <i>Advanced Functional Materials</i> , 2018 , 28, 1802129	15.6	180
260	Bifunctionally active and durable hierarchically porous transition metal-based hybrid electrocatalyst for rechargeable metal-air batteries. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 677-6	5 87 .8	53
259	An all-aqueous redox flow battery with unprecedented energy density. <i>Energy and Environmental Science</i> , 2018 , 11, 2010-2015	35.4	99
258	30 Years of Lithium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1800561	24	1694
257	A Polyanion Host as a Prospective High Voltage Cathode Material for Sodium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A1822-A1828	3.9	9
256	Range-extending Zinc-air battery for electric vehicle. <i>AIMS Energy</i> , 2018 , 6, 121-145	1.8	22
255	Web-like 3D Architecture of Pt Nanowires and Sulfur-Doped Carbon Nanotube with Superior Electrocatalytic Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 93-98	8.3	36
254	3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702381	21.8	132
253	Hierarchical Core-Shell Nickel Cobaltite Chestnut-like Structures as Bifunctional Electrocatalyst for Rechargeable Metal-Air Batteries. <i>ChemSusChem</i> , 2018 , 11, 406-414	8.3	21
252	Conductive Nanocrystalline Niobium Carbide as High-Efficiency Polysulfides Tamer for Lithium-Sulfur Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1704865	15.6	173
251	Pore structure characterization of coal by synchrotron radiation nano-CT. <i>Fuel</i> , 2018 , 215, 102-110	7.1	84
250	A new approach for selecting best development face ventilation mode based on G1-coefficient of variation method. <i>Journal of Central South University</i> , 2018 , 25, 2462-2471	2.1	7
249	Highly Efficient Removal of Suspended Solid Pollutants from Wastewater by Magnetic Fe3O4-Graphene Oxides Nanocomposite. <i>ChemistrySelect</i> , 2018 , 3, 11643-11648	1.8	2
248	Computational and Experimental Investigations of Fluid Flow in Rock Materials. <i>Advances in Civil Engineering</i> , 2018 , 2018, 1-3	1.3	
247	High performance organic sodium-ion hybrid capacitors based on nano-structured disodium rhodizonate rivaling inorganic hybrid capacitors. <i>Green Chemistry</i> , 2018 , 20, 4920-4931	10	10
246	Experimental study on radon exhalation characteristics of coal samples under varying gas pressures. <i>Results in Physics</i> , 2018 , 10, 1006-1014	3.7	2
245	Highly durable 3D conductive matrixed silicon anode for lithium-ion batteries. <i>Journal of Power Sources</i> , 2018 , 407, 84-91	8.9	20

244	The Dual-Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward High-Performance Liß Full Cell. <i>Advanced Energy Materials</i> , 2018 , 8, 1802561	21.8	83
243	Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li D 2 Batteries: Recent Progress and Perspective. <i>Advanced Energy Materials</i> , 2018 , 8, 1800348	21.8	101
242	A coupled electromagnetic irradiation, heat and mass transfer model for microwave heating and its numerical simulation on coal. <i>Fuel Processing Technology</i> , 2018 , 177, 237-245	7.2	56
241	Analysis on the multi-phase flow characterization in cross-measure borehole during coal hydraulic slotting. <i>International Journal of Mining Science and Technology</i> , 2018 , 28, 701-705	7.1	17
240	Stringed Bube on cubelhanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithiumBulfur batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 2372-2381	35.4	193
239	Dimensional analysis and prediction of coal fines generation under two-phase flow conditions. <i>Fuel</i> , 2017 , 194, 460-479	7.1	21
238	Modified chalcogens with a tuned nano-architecture for high energy density and long life hybrid super capacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7523-7532	13	12
237	Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography. <i>Journal of Applied Electrochemistry</i> , 2017 , 47, 281-293	2.6	21
236	A facile self-templating synthesis of carbon frameworks with tailored hierarchical porosity for enhanced energy storage performance. <i>Chemical Communications</i> , 2017 , 53, 5028-5031	5.8	9
235	Self-Supported Cobalt Nickel Nitride Nanowires Electrode for Overall Electrochemical Water Splitting. <i>Energy Technology</i> , 2017 , 5, 1908-1911	3.5	31
234	CNT-threaded N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and LiB battery. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9775-9784	13	99
233	Reconciled Nanoarchitecture with Overlapped 2 D Anatomy for High-Energy Hybrid Supercapacitors. <i>Energy Technology</i> , 2017 , 5, 1919-1926	3.5	3
232	Design of ultralong single-crystal nanowire-based bifunctional electrodes for efficient oxygen and hydrogen evolution in a mild alkaline electrolyte. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10895-1090	1 ¹³	20
231	Effects of coal properties on ventilation air leakage into methane gas drainage boreholes: Application of the orthogonal design. <i>Journal of Natural Gas Science and Engineering</i> , 2017 , 45, 88-95	4.6	19
230	Hot-Chemistry Structural Phase Transformation in Single-Crystal Chalcogenides for Long-Life Lithium Ion Batteries. <i>ACS Applied Materials & District Materials</i> (2017), 9, 20603-20612	9.5	14
229	Self-Assembly of Spinel Nanocrystals into Mesoporous Spheres as Bifunctionally Active Oxygen Reduction and Evolution Electrocatalysts. <i>ChemSusChem</i> , 2017 , 10, 2258-2266	8.3	19
228	Characterisation of creep in coal and its impact on permeability: An experimental study. <i>International Journal of Coal Geology</i> , 2017 , 173, 200-211	5.5	39
227	Strings of Porous Carbon Polyhedrons as Self-Standing Cathode Host for High-Energy-Density LithiumBulfur Batteries. <i>Angewandte Chemie</i> , 2017 , 129, 6272-6276	3.6	30

226	Strings of Porous Carbon Polyhedrons as Self-Standing Cathode Host for High-Energy-Density Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6176-6180	16.4	127
225	Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding?. <i>Energy and Environmental Science</i> , 2017 , 10, 296-305	35.4	103
224	Charge/Discharge Asymmetry in Blended Lithium-Ion Electrodes. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A39-A47	3.9	7
223	Advanced Biowaste-Based Flexible Photocatalytic Fuel Cell as a Green Wearable Power Generator. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600191	6.8	16
222	In Situ Polymer Graphenization Ingrained with Nanoporosity in a Nitrogenous Electrocatalyst Boosting the Performance of Polymer-Electrolyte-Membrane Fuel Cells. <i>Advanced Materials</i> , 2017 , 29, 1604456	24	161
221	Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24159-24167	13	19
220	Green Solid Electrolyte with Cofunctionalized Nanocellulose/Graphene Oxide Interpenetrating Network for Electrochemical Gas Sensors. <i>Small Methods</i> , 2017 , 1, 1700237	12.8	31
219	Hierarchical Porous Double-Shelled Electrocatalyst with Tailored Lattice Alkalinity toward Bifunctional Oxygen Reactions for MetalAir Batteries. <i>ACS Energy Letters</i> , 2017 , 2, 2706-2712	20.1	64
218	Tuning Shell Numbers of Transition Metal Oxide Hollow Microspheres toward Durable and Superior Lithium Storage. <i>ACS Nano</i> , 2017 , 11, 11521-11530	16.7	72
217	Compact high volumetric and areal capacity lithium sulfur batteries through rock salt induced nano-architectured sulfur hosts. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21435-21441	13	40
216	Experimental study of coal matrix-cleat interaction under constant volume boundary condition. <i>International Journal of Coal Geology</i> , 2017 , 181, 124-132	5.5	31
215	Efficient Method of Designing Stable Layered Cathode Material for Sodium Ion Batteries Using Aluminum Doping. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5021-5030	6.4	44
214	Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries. <i>Nanoscale</i> , 2017 , 9, 15865-15872	7.7	42
213	Morphological and Electrochemical Characterization of Nanostructured Li4Ti5O12Electrodes Using Multiple Imaging Mode Synchrotron X-ray Computed Tomography. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A2861-A2871	3.9	12
212	Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores. <i>Fuel</i> , 2017 , 210, 217-226	7.1	73
211	Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. <i>Nano Energy</i> , 2017 , 40, 88-94	17.1	96
210	Synchrotron X-ray nano computed tomography based simulation of stress evolution in LiMn2O4 electrodes. <i>Electrochimica Acta</i> , 2017 , 247, 1103-1116	6.7	15
209	Defect Engineering of Chalcogen-Tailored Oxygen Electrocatalysts for Rechargeable Quasi-Solid-State Zinc-Air Batteries. <i>Advanced Materials</i> , 2017 , 29, 1702526	24	131

208	Clean Power Generation from the Intractable Natural Coalfield Fires: Turn Harm into Benefit. <i>Scientific Reports</i> , 2017 , 7, 5302	4.9	13
207	Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 28604-28611	9.5	33
206	Effects of coal damage on permeability and gas drainage performance. <i>International Journal of Mining Science and Technology</i> , 2017 , 27, 783-786	7.1	26
205	Evolution of Coal Petrophysical Properties under Microwave Irradiation Stimulation for Different Water Saturation Conditions. <i>Energy & Energy & En</i>	4.1	30
204	Sensitivity analysis on the microwave heating of coal: A coupled electromagnetic and heat transfer model. <i>Applied Thermal Engineering</i> , 2017 , 126, 949-962	5.8	71
203	Calendar Aging and Gas Generation in Commercial Graphite/NMC-LMO Lithium-Ion Pouch Cell. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A3469-A3483	3.9	31
202	All-in-One Graphene Based Composite Fiber: Toward Wearable Supercapacitor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 39576-39583	9.5	57
201	Engineered architecture of nitrogenous graphene encapsulating porous carbon with nano-channel reactors enhancing the PEM fuel cell performance. <i>Nano Energy</i> , 2017 , 42, 249-256	17.1	30
200	Effects of microstructure on water imbibition in sandstones using X-ray computed tomography and neutron radiography. <i>Journal of Geophysical Research: Solid Earth</i> , 2017 , 122, 4963-4981	3.6	23
199	Nonprecious Electrocatalysts for Li?Air and Zn?Air Batteries: Fundamentals and recent advances <i>IEEE Nanotechnology Magazine</i> , 2017 , 11, 29-55	1.7	10
198	Nitrogen-doped carbon nanocones encapsulating with nickellobalt mixed phosphides for enhanced hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16568-16572	13	71
197	Impact of coal matrix strains on the evolution of permeability. <i>Fuel</i> , 2017 , 189, 270-283	7.1	49
196	Carbon-Coated Silicon Nanowires on Carbon Fabric as Self-Supported Electrodes for Flexible Lithium-Ion Batteries. <i>ACS Applied Materials & Electrodes</i> , 2017 , 9, 9551-9558	9.5	81
195	Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. <i>Advanced Materials</i> , 2017 , 29, 1604685	24	806
194	Fibre Optic Sensing Based Slope Crest Tension Crack Monitoring System for Surface Mines 2017,		2
193	Development of an integrated reservoir-wellbore model to examine the hydrodynamic behaviour of perforated pipes. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 156, 269-281	4.4	5
192	Experimental investigation on the impact of coal fines generation and migration on coal permeability. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 159, 257-266	4.4	32
191	Enhanced Reversible Sodium-Ion Intercalation by Synergistic Coupling of Few-Layered MoS2 and S-Doped Graphene. <i>Advanced Functional Materials</i> , 2017 , 27, 1702562	15.6	116

(2016-2016)

190	Gas Pickering Emulsion Templated Hollow Carbon for High Rate Performance Lithium Sulfur Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 8408-8417	15.6	90	
189	High-performance flexible electrode based on electrodeposition of polypyrrole/MnO2 on carbon cloth for supercapacitors. <i>Journal of Power Sources</i> , 2016 , 326, 357-364	8.9	65	
188	Characterisation of mechanics and flow fields around in-seam methane gas drainage borehole for preventing ventilation air leakage: A case study. <i>International Journal of Coal Geology</i> , 2016 , 162, 123-1	3 ē ·5	59	•
187	Flexible Rechargeable Zinc-Air Batteries through Morphological Emulation of Human Hair Array. Advanced Materials, 2016, 28, 6421-8	24	154	
186	Laminated Cross-Linked Nanocellulose/Graphene Oxide Electrolyte for Flexible Rechargeable ZincAir Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1600476	21.8	115	
185	Biomimetic design of monolithic fuel cell electrodes with hierarchical structures. <i>Nano Energy</i> , 2016 , 20, 57-67	17.1	8	
184	Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes. <i>Nano Energy</i> , 2016 , 19, 187-197	17.1	124	
183	Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery. <i>Nano Letters</i> , 2016 , 16, 1794-802	11.5	175	
182	Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography. <i>Journal of Power Sources</i> , 2016 , 307, 496-509	8.9	57	
181	Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3754-3764	13	101	
180	A flexible solid-state electrolyte for wide-scale integration of rechargeable zinclir batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 663-670	35.4	194	
179	Sulfur Nanogranular Film-Coated Three-Dimensional Graphene Sponge-Based High Power Lithium Sulfur Battery. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 1984-91	9.5	60	
178	Multi-Particle Model for a Commercial Blended Lithium-Ion Electrode. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A458-A469	3.9	24	
177	Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction. <i>Nano Energy</i> , 2016 , 19, 27-38	17.1	46	
176	Theoretical and experimental studies of highly active graphene nanosheets to determine catalytic nitrogen sites responsible for the oxygen reduction reaction in alkaline media. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 976-990	13	36	
175	The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. <i>Energy and Environmental Science</i> , 2016 , 9, 357-390	35.4	387	
174	Free-Standing Functionalized Graphene Oxide Solid Electrolytes in Electrochemical Gas Sensors. <i>Advanced Functional Materials</i> , 2016 , 26, 1729-1736	15.6	81	
173	Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4977-82	16.4	218	

172	3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries. <i>Small</i> , 2016 , 12, 2707-14	11	117
171	Multigrain electrospun nickel doped lithium titanate nanofibers with high power lithium ion storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12638-12647	13	19
170	Stabilization of platinumBickel alloy nanoparticles with a sulfur-doped graphene support in polymer electrolyte membrane fuel cells. <i>RSC Advances</i> , 2016 , 6, 112226-112231	3.7	5
169	Dynamics of a Blended Lithium-Ion Battery Electrode During Galvanostatic Intermittent Titration Technique. <i>Electrochimica Acta</i> , 2016 , 222, 1741-1750	6.7	20
168	Nanotechnology for environmentally sustainable electromobility. <i>Nature Nanotechnology</i> , 2016 , 11, 103	3 9 &1 9 5	1 90
167	Nitrogen and sulfur co-doped mesoporous carbon as cathode catalyst for H2/O2 alkaline membrane fuel cell laffect of catalyst/bonding layer loading. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 9159-9166	6.7	13
166	Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode electrode interaction in high-power Li-ion batteries. <i>Nano Energy</i> , 2016 , 24, 72-77	17.1	71
165	Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metallir batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7107-7134	13	337
164	Nano-particle size effect on the performance of Li4Ti5O12 spinel. <i>Electrochimica Acta</i> , 2016 , 196, 33-40	6.7	29
163	Co-N Decorated Hierarchically Porous Graphene Aerogel for Efficient Oxygen Reduction Reaction in Acid. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2016 , 8, 6488-95	9.5	136
162	Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithiumBulfur batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 2533-2538	35.4	300
161	Impact of creep on the evolution of coal permeability and gas drainage performance. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 33, 469-482	4.6	53
160	Molecular Functionalization of Graphene Oxide for Next-Generation Wearable Electronics. <i>ACS Applied Materials & District Materials & D</i>	9.5	28
159	Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors. <i>ACS Applied Materials & Description (Capacitors)</i> 8, 25297-305	9.5	50
158	Large-scale study of the effect of wellbore geometry on integrated reservoir-wellbore flow. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 35, 320-330	4.6	6
157	Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries. <i>ChemSusChem</i> , 2015 , 8, 1058-65	8.3	77
156	Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9461-9467	13	66
155	Design of Highly Active Perovskite Oxides for Oxygen Evolution Reaction by Combining Experimental and ab Initio Studies. <i>ACS Catalysis</i> , 2015 , 5, 4337-4344	13.1	98

154	Elevated rate capability of sulfur wrapped with thin rGO layers for lithiumBulfur batteries. <i>RSC Advances</i> , 2015 , 5, 29370-29374	3.7	11
153	Synthesis and structural evolution of Pt nanotubular skeletons: revealing the source of the instability of nanostructured electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12663-12671	13	18
152	Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries. <i>Nature Communications</i> , 2015 , 6, 8597	17.4	133
151	Characterization of coal fines generation: A micro-scale investigation. <i>Journal of Natural Gas Science and Engineering</i> , 2015 , 27, 862-875	4.6	36
150	Highly active Co-doped LaMnO3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zincBir batteries. <i>Electrochemistry Communications</i> , 2015 , 60, 38-41	5.1	70
149	Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries. <i>ChemSusChem</i> , 2015 , 8, 3129-38	8.3	51
148	Correlation between theoretical descriptor and catalytic oxygen reduction activity of graphene supported palladium and palladium alloy electrocatalysts. <i>Journal of Power Sources</i> , 2015 , 300, 1-9	8.9	33
147	Synthesis and Characterization of Fe2O3 for H2S Removal at Low Temperature. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 8469-8478	3.9	76
146	Hollow PdCu nanocubes supported by N-doped graphene: A surface science and electrochemical study. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 14305-14313	6.7	14
145	Building sponge-like robust architectures of CNTgrapheneBi composites with enhanced rate and cycling performance for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3962-3967	13	44
144	Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 902-10	9.5	136
143	Effects of structural design on the performance of electrical double layer capacitors. <i>Applied Energy</i> , 2015 , 138, 631-639	10.7	22
142	Multigrain platinum nanowires consisting of oriented nanoparticles anchored on sulfur-doped graphene as a highly active and durable oxygen reduction electrocatalyst. <i>Advanced Materials</i> , 2015 , 27, 1229-34	24	106
141	The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack. <i>Applied Catalysis B: Environmental</i> , 2015 , 162, 133-140	21.8	41
140	Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells. <i>Journal of Power Sources</i> , 2015 , 273, 697-706	8.9	73
139	Electrocatalysts: Multigrain Platinum Nanowires Consisting of Oriented Nanoparticles Anchored on Sulfur-Doped Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst (Adv. Mater. 7/2015). Advanced Materials, 2015 , 27, 1134-1134	24	1
138	Batteries: Flexible High-Energy Polymer-Electrolyte-Based Rechargeable ZincAir Batteries (Adv. Mater. 37/2015). <i>Advanced Materials</i> , 2015 , 27, 5623-5623	24	1
137	Sulfur Atoms Bridging Few-Layered MoS2 with S-Doped Graphene Enable Highly Robust Anode for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1501106	21.8	152

136	Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries. <i>Advanced Materials</i> , 2015 , 27, 5617-22	24	200
135	Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes. <i>Nano Energy</i> , 2015 , 15, 746-754	17.1	144
134	Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors. <i>Carbon</i> , 2015 , 93, 258-265	10.4	47
133	Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. <i>ACS Applied Materials & Capability & Capabil</i>	9.5	159
132	Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. <i>RSC Advances</i> , 2015 , 5, 6195-6206	3.7	55
131	Iron-tetracyanobenzene complex derived non-precious catalyst for oxygen reduction reaction. <i>Electrochimica Acta</i> , 2015 , 162, 224-229	6.7	8
130	Model-Based Prediction of Composition of an Unknown Blended Lithium-Ion Battery Cathode. Journal of the Electrochemical Society, 2015 , 162, A716-A721	3.9	17
129	3-Dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3343-3350	13	142
128	Quaternized graphene oxide nanocomposites as fast hydroxide conductors. ACS Nano, 2015, 9, 2028-37	16.7	72
127	Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6340-6350	13	93
126	Tin oxide - mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction. <i>Electrochimica Acta</i> , 2014 , 121, 421-427	6.7	20
125	Advanced Extremely Durable 3D Bifunctional Air Electrodes for Rechargeable Zinc-Air Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1301389	21.8	224
124	Development and Simulation of Sulfur-doped Graphene Supported Platinum with Exemplary Stability and Activity Towards Oxygen Reduction. <i>Advanced Functional Materials</i> , 2014 , 24, 4325-4336	15.6	184
123	Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells. <i>Journal of Power Sources</i> , 2014 , 262, 488-493	8.9	34
122	Effects of Diffusive Charge Transfer and Salt Concentration Gradient in Electrolyte on Li-ion Battery Energy and Power Densities. <i>Electrochimica Acta</i> , 2014 , 125, 117-123	6.7	23
121	Design of a sorbent to enhance reactive adsorption of hydrogen sulfide. <i>ACS Applied Materials</i> & amp; Interfaces, 2014, 6, 21167-77	9.5	51
120	Engineered Si electrode nanoarchitecture: a scalable postfabrication treatment for the production of next-generation Li-ion batteries. <i>Nano Letters</i> , 2014 , 14, 277-83	11.5	103
119	Manganese-Based Non-Precious Metal Catalyst for Oxygen Reduction in Acidic Media. <i>ECS Transactions</i> , 2014 , 61, 35-42	1	9

Pd-decorated three-dimensional nanoporous Au/Ni foam composite electrodes for H2O2 reduction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16474-16479	13	27
Subeutectic growth of single-crystal silicon nanowires grown on and wrapped with graphene nanosheets: high-performance anode material for lithium-ion battery. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 13757-64	9.5	38
High Performance Porous Anode Based on Template-Free Synthesis of Co3O4 Nanowires for Lithium-Ion Batteries. <i>Electrochimica Acta</i> , 2014 , 139, 145-151	6.7	34
Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries. <i>ACS Applied Materials & District Materials & Distri</i>	9.5	23
Oxygen Reduction on Graphenellarbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur. <i>ACS Catalysis</i> , 2014 , 4, 2734-2740	13.1	145
Electrospun Iron B olyaniline B olyacrylonitrile Derived Nanofibers as Non B recious Oxygen Reduction Reaction Catalysts for PEM Fuel Cells. <i>Electrochimica Acta</i> , 2014 , 139, 111-116	6.7	60
Morphology and composition controlled platinumBobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. <i>Nano Energy</i> , 2014 , 10, 135-143	17.1	68
Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. <i>Nano Energy</i> , 2014 , 10, 192-200	17.1	145
Theoretical insight into highly durable iron phthalocyanine derived non-precious catalysts for oxygen reduction reactions. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19707-19716	13	37
Nitrogen and Sulfur Co-doped Mesoporous Carbon Materials as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. <i>Electrochimica Acta</i> , 2014 , 145, 259-269	6.7	52
Dual phase Li4Ti5O12IiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries. <i>Nano Energy</i> , 2014 , 9, 383-391	17.1	97
High performance porous polybenzimidazole membrane for alkaline fuel cells. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 18405-18415	6.7	35
Simultaneous formation of nitrogen and sulfur-doped transition metal catalysts for oxygen reduction reaction through pyrolyzing carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt. <i>Journal of Power Sources</i> , 2014 , 266, 88-98	8.9	35
Enhanced adsorption of hydrogen sulfide and regeneration ability on the composites of zinc oxide with reduced graphite oxide. <i>Chemical Engineering Journal</i> , 2014 , 253, 264-273	14.7	36
Morphologically controlled Co3O4 nanodisks as practical bi-functional catalyst for rechargeable zinclir battery applications. <i>Electrochemistry Communications</i> , 2014 , 43, 109-112	5.1	61
A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys. <i>Nanotechnology</i> , 2014 , 25, 445602	3.4	17
N,N?-Bis(salicylidene)ethylenediamine as a nitrogen-rich precursor to synthesize electrocatalysts with high methanol-tolerance for polymer electrolyte membrane fuel cell oxygen reduction reaction. <i>Journal of Power Sources</i> , 2014 , 260, 349-356	8.9	7
Graphene wrapped silicon nanocomposites for enhanced electrochemical performance in lithium ion batteries. <i>Electrochimica Acta</i> , 2014 , 130, 127-134	6.7	58
	reduction. Journal of Materials Chemistry A, 2014, 2, 16474-16479 Subeutectic growth of single-crystal silicon nanowires grown on and wrapped with graphene nanosheets: high-performance anode material for lithium-ion battery. ACS Applied Materials & amp; Interfaces, 2014, 6, 13757-64 High Performance Porous Anode Based on Template-Free Synthesis of Co3O4 Nanowires for Lithium-ion Batteries. Electrochimica Acta, 2014, 139, 145-151 Self-supported single crystalline H2TiBO17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries. ACS Applied Materials & amp; Interfaces, 2014, 6, 568-74 Oxygen Reduction on Graphenetarbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur. ACS Catalysis, 2014, 4, 2734-2740 Electrospun IronBolyanilineBolyacrylonitrile Derived Nanofibers as NonBrecious Oxygen Reduction Reaction Catalysts for PEM Fuel Cells. Electrochimica Acta, 2014, 139, 111-116 Morphology and composition controlled platinumBobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. Nano Energy, 2014, 10, 135-143 Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy, 2014, 10, 192-200 Theoretical insight into highly durable iron phthalocyanine derived non-precious catalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2014, 2, 19707-19716 Nitrogen and Sulfur Co-doped Mesoporous Carbon Materials as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Electrochimica Acta, 2014, 145, 259-269 Dual phase Li4TiSO12tilo 2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries. Nano Energy, 2014, 9, 383-391 High performance porous polybenzimidazole membrane for alkaline fuel cells. International Journal of Hydrogen Energy, 2014, 9, 383-391 High performance porous polybenzimidazole membrane for alkaline fuel cells International Aprinal Power Fources, 2014, 266, 88-98 Enhanced adsorption of hydrogen sulfide and regener	subeutectic growth of single-crystal silicon nanowires grown on and wrapped with graphene nanosheets: high-performance anode material for lithium-ion battery. ACS Applied Materials & amp: Interfaces, 2014, 6, 13757-64 High Performance Porous Anode Based on Template-Free Synthesis of Co3O4 Nanowires for Lithium-ion Batteries. Electrochimica Acta, 2014, 139, 145-151 Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries. ACS Applied Materials & amp: Interfaces, 2014, 6, 568-74 Oxygen Reduction on GrapheneCarbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur. ACS Catalysis, 2014, 4, 2734-2740 Electrospun Iron®olyaniline®olyacrylonitrile Derived Nanofibers as Non®recious Oxygen Reduction Reaction Catalysts for PEM Fuel Cells. Electrochimica Acta, 2014, 139, 111-116 Morphology and composition controlled platinum®obalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. Nano Energy, 2014, 10, 135-143 Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy, 2014, 10, 192-200 Theoretical insight into highly durable iron phthalocyanine derived non-precious catalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2014, 2, 19707-19716 13 Nitrogen and Sulfur Co-doped Mesoporous Carbon Materials as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Electrochimica Acta, 2014, 145, 259-269 Dual phase Li4Ti5O12IIiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries. Nano Energy, 2014, 9, 383-391 High performance porous polybenzimidazole membrane for alkaline fuel cells. International Journal of Hydrogen Energy, 2014, 9, 383-391 High performance porous polybenzimidazole membrane for alkaline fuel cells. International Journal of Hydrogen Sulfide and regeneration ability on the composites of zinc oxide with reduced graphite oxide. Chemical Engineering Journal, 2014, 253,

100	A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. <i>Energy and Environmental Science</i> , 2014 , 7, 1564	35.4	860
99	Hydrogen sulfide adsorption on nano-sized zinc oxide/reduced graphite oxide composite at ambient condition. <i>Applied Surface Science</i> , 2013 , 276, 646-652	6.7	63
98	Activated and nitrogen-doped exfoliated graphene as air electrodes for metallir battery applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2639	13	74
97	Recent progress in non-precious metal catalysts for PEM fuel cell applications. <i>Canadian Journal of Chemical Engineering</i> , 2013 , 91, 1881-1895	2.3	64
96	Effect of convective mass transfer on lead-acid battery performance. <i>Electrochimica Acta</i> , 2013 , 97, 278	3- 8 8	15
95	Controlled growth of platinum nanowire arrays on sulfur doped graphene as high performance electrocatalyst. <i>Scientific Reports</i> , 2013 , 3, 2431	4.9	61
94	Sn/SnO2 embedded in mesoporous carbon nanocomposites as negative electrode for lithium ion batteries. <i>Electrochimica Acta</i> , 2013 , 87, 844-852	6.7	62
93	Roles of coal heterogeneity on evolution of coal permeability under unconstrained boundary conditions. <i>Journal of Natural Gas Science and Engineering</i> , 2013 , 15, 38-52	4.6	38
92	Highly Anion-Conducting Porous Polymer Electrolyte Membrane for Alkaline Fuel Cells. <i>ECS Transactions</i> , 2013 , 50, 2083-2089	1	1
91	Hierarchical Li4Ti5O12-TiO2 composite microsphere consisting of nanocrystals for high power Li-ion batteries. <i>Electrochimica Acta</i> , 2013 , 108, 104-111	6.7	59
90	Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. <i>Nano Letters</i> , 2013 , 13, 5467-73	11.5	305
89	Iron- and Nitrogen-Functionalized Graphene Nanosheet and Nanoshell Composites as a Highly Active Electrocatalyst for Oxygen Reduction Reaction. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 26501	1 <i>-</i> 3:850	8 ⁶⁵
88	Cubic spinel cobalt oxide/multi-walled carbon nanotube composites as an efficient bifunctionalelectrocatalyst for oxygen reaction. <i>Electrochemistry Communications</i> , 2013 , 34, 125-129	5.1	54
87	Bi-Functional N-Doped CNT/Graphene Composite as Highly Active and Durable Electrocatalyst for Metal Air Battery Applications. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A2244-A2250	3.9	52
86	Highly Active Graphene Nanosheets Prepared via Extremely Rapid Heating as Efficient Zinc-Air Battery Electrode Material. <i>Journal of the Electrochemical Society</i> , 2013 , 160, F910-F915	3.9	51
85	Oxygen Reduction Reaction Using MnO2Nanotubes/Nitrogen-Doped Exfoliated Graphene Hybrid Catalyst for Li-O2Battery Applications. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A344-A350	3.9	77
84	One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4754	13	431
83	Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature. <i>Applied Surface Science</i> , 2013 , 280, 360-365	6.7	21

82	Impact of Various Parameters on the Production of Coalbed Methane. SPE Journal, 2013, 18, 910-923	3.1	22
81	Electrospun Iron/Polyacrylonitrile Derived Nanofibrous Catalysts for Oxygen Reduction Reaction. <i>ECS Transactions</i> , 2013 , 50, 1807-1814	1	1
80	Effect of electrode physical and chemical properties on lithium-ion battery performance. <i>International Journal of Energy Research</i> , 2013 , 37, 1723-1736	4.5	25
79	Nitrogen-Doped Activated Graphene Supported Platinum Electrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells. <i>ECS Transactions</i> , 2013 , 50, 1815-1822	1	4
78	Cyanamide derived thin film on carbon nanotubes as metal free oxygen reduction reaction electrocatalyst. <i>Electrochimica Acta</i> , 2012 , 59, 8-13	6.7	44
77	Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. <i>Electrochimica Acta</i> , 2012 , 69, 295-300	6.7	145
76	Mechanistic analysis of highly active nitrogen-doped carbon nanotubes for the oxygen reduction reaction. <i>Journal of Power Sources</i> , 2012 , 205, 215-221	8.9	34
75	Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery. <i>Journal of Power Sources</i> , 2012 , 212, 66-72	8.9	63
74	High durable PEK-based anion exchange membrane for elevated temperature alkaline fuel cells. <i>Journal of Membrane Science</i> , 2012 , 394-395, 193-201	9.6	74
73	Modeling and Upscaling of Binary Gas Coal Interactions in CO2 Enhanced Coalbed Methane Recovery. <i>Procedia Environmental Sciences</i> , 2012 , 12, 926-939		9
73 72		13.1	9
	Recovery. <i>Procedia Environmental Sciences</i> , 2012 , 12, 926-939 Determination of Iron Active Sites in Pyrolyzed Iron-Based Catalysts for the Oxygen Reduction	13.1	
72	Recovery. Procedia Environmental Sciences, 2012, 12, 926-939 Determination of Iron Active Sites in Pyrolyzed Iron-Based Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 2761-2768 Titanium nitrideBarbon nanotube coreBhell composites as effective electrocatalyst supports for	13.1	124
7 ²	Recovery. Procedia Environmental Sciences, 2012, 12, 926-939 Determination of Iron Active Sites in Pyrolyzed Iron-Based Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 2761-2768 Titanium nitridellarbon nanotube corelihell composites as effective electrocatalyst supports for low temperature fuel cells. Journal of Materials Chemistry, 2012, 22, 3727 Influence of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Model development and analysis. International Journal of Greenhouse Gas Control,		124 78
7 ² 7 ¹ 7 ⁰	Determination of Iron Active Sites in Pyrolyzed Iron-Based Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 2761-2768 Titanium nitridellarbon nanotube corellhell composites as effective electrocatalyst supports for low temperature fuel cells. Journal of Materials Chemistry, 2012, 22, 3727 Influence of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Model development and analysis. International Journal of Greenhouse Gas Control, 2012, 8, 101-110 Complex evolution of coal permeability during CO2 injection under variable temperatures.	4.2	124 78 101
7 ² 7 ¹ 7 ⁰	Determination of Iron Active Sites in Pyrolyzed Iron-Based Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 2761-2768 Titanium nitrideBarbon nanotube coreBhell composites as effective electrocatalyst supports for low temperature fuel cells. Journal of Materials Chemistry, 2012, 22, 3727 Influence of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Model development and analysis. International Journal of Greenhouse Gas Control, 2012, 8, 101-110 Complex evolution of coal permeability during CO2 injection under variable temperatures. International Journal of Greenhouse Gas Control, 2012, 9, 281-293 Selective Dibenzothiophene Adsorption on Graphene Prepared Using Different Methods. Industrial	4.2 4.2 3.9	124 78 101 61
7 ² 7 ¹ 7 ⁰ 69 68	Determination of Iron Active Sites in Pyrolyzed Iron-Based Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 2761-2768 Titanium nitridellarbon nanotube corelihell composites as effective electrocatalyst supports for low temperature fuel cells. Journal of Materials Chemistry, 2012, 22, 3727 Influence of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Model development and analysis. International Journal of Greenhouse Gas Control, 2012, 8, 101-110 Complex evolution of coal permeability during CO2 injection under variable temperatures. International Journal of Greenhouse Gas Control, 2012, 9, 281-293 Selective Dibenzothiophene Adsorption on Graphene Prepared Using Different Methods. Industrial & Differenting Chemistry Research, 2012, 51, 10259-10264 Facile Synthesis and Evaluation of Nanofibrous Iron Carbon Based Non-Precious Oxygen Reduction	4.2 4.2 3.9	124 78 101 61 43

64	Effects of non-Darcy flow on the performance of coal seam gas wells. <i>International Journal of Coal Geology</i> , 2012 , 93, 62-74	5.5	95
63	Highly Durable Platinum-Cobalt Nanowires by Microwave Irradiation as Oxygen Reduction Catalyst for PEM Fuel Cell. <i>Electrochemical and Solid-State Letters</i> , 2012 , 15, B83		24
62	Laboratory Study of Gas Permeability and Cleat Compressibility for CBM/ECBM in Chinese Coals. <i>Energy Exploration and Exploitation</i> , 2012 , 30, 451-476	2.1	52
61	Effect of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Experimental observations. <i>International Journal of Greenhouse Gas Control</i> , 2011 , 5, 1284-	-4 2 93	122
60	Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 20774-2	2 0 781	346
59	Graphene-Based Flexible Supercapacitors: Pulse-Electropolymerization of Polypyrrole on Free-Standing Graphene Films. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 17612-17620	3.8	234
58	Free-Standing Layer-By-Layer Hybrid Thin Film of Graphene-MnO2 Nanotube as Anode for Lithium Ion Batteries. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1855-1860	6.4	251
57	A fully coupled gas flow, coal deformation and thermal transport model for the injection of carbon dioxide into coal seams 2011 , 69-93		
56	Interactions of multiple processes during CBM extraction: A critical review. <i>International Journal of Coal Geology</i> , 2011 , 87, 175-189	5.5	279
55	Impact of transition from local swelling to macro swelling on the evolution of coal permeability. International Journal of Coal Geology, 2011, 88, 31-40	5.5	114
54	A review on non-precious metal electrocatalysts for PEM fuel cells. <i>Energy and Environmental Science</i> , 2011 , 4, 3167	35.4	1495
53	Heat-Treated Nonprecious Catalyst Using Fe and Nitrogen-Rich 2,3,7,8-Tetra(pyridin-2-yl)pyrazino[2,3-g]quinoxaline Coordinated Complex for Oxygen Reduction Reaction in PEM Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18856-18862	3.8	41
52	Highly durable and active non-precious air cathode catalyst for zinc air battery. <i>Journal of Power Sources</i> , 2011 , 196, 3673-3677	8.9	74
51	Highly Durable Graphene Nanosheet Supported Iron Catalyst for Oxygen Reduction Reaction in PEM Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2011 , 159, B86-B89	3.9	52
50	A dual poroelastic model for CO2-enhanced coalbed methane recovery. <i>International Journal of Coal Geology</i> , 2011 , 86, 177-189	5.5	93
49	Nitrogen doped carbon nanotubes synthesized from aliphatic diamines for oxygen reduction reaction. <i>Electrochimica Acta</i> , 2011 , 56, 1570-1575	6.7	119
48	Nitrogen-doped carbon nanotubes as air cathode catalysts in zinc-air battery. <i>Electrochimica Acta</i> , 2011 , 56, 5080-5084	6.7	102
47	Evolution of coal permeability from stress-controlled to displacement-controlled swelling conditions. <i>Fuel</i> , 2011 , 90, 2987-2997	7.1	124

(2010-2011)

46	Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 6073-6081	6.7	68
45	One-Step Synthesized Tungsten Oxide/Carbon Nanotube Composites as Pt Catalyst Supports for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. <i>Journal of Nanoengineering and Nanomanufacturing</i> , 2011 , 1, 280-286		2
44	Nanoporous Carbon-Supported Fe/Co-N Electrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells. <i>ECS Transactions</i> , 2010 , 28, 101-112	1	4
43	Effect of Different Surface Morphologies and Nitrogen Contents on the Electrochemical Activity of Nitrogen Doped Carbon Nanotubes towards Oxygen Reduction Reaction for Low Temperature Fuel Cells. <i>ECS Transactions</i> , 2010 , 28, 55-63	1	2
42	Nitrogen Doped Carbon Nanotube Thin Films as Efficient Oxygen Reduction Catalyst for Alkaline Anion Exchange Membrane Fuel Cell. <i>ECS Transactions</i> , 2010 , 28, 63-68	1	14
41	Improved Synthesis Method for a Cyanamide Derived Non-Precious ORR Catalyst for PEFCs. <i>ECS Transactions</i> , 2010 , 28, 39-46	1	5
40	Ultrathin, transparent, and flexible graphene films for supercapacitor application. <i>Applied Physics Letters</i> , 2010 , 96, 253105	3.4	316
39	Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells. <i>Nanotechnology</i> , 2010 , 21, 165705	3.4	41
38	Highly Active Porous Carbon-Supported Nonprecious Metal® Electrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8048-8053	3.8	133
37	Nitrogen-Doped Carbon Nanotubes as Platinum Catalyst Supports for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21982-21988	3.8	145
36	Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17056-8	16.4	230
35	Multiphysics of Coal-Gas Interactions: The Scientific Foundation for CBM Production and CO2 Storage in Coal 2010 ,		1
34	Impact of Rock Microstructures on the Supercritical CO2 Enhanced Gas Recovery 2010,		2
33	Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction. <i>Electrochimica Acta</i> , 2010 , 55, 4799-4804	6.7	92
32	Linking gas-sorption induced changes in coal permeability to directional strains through a modulus reduction ratio. <i>International Journal of Coal Geology</i> , 2010 , 83, 21-30	5.5	104
31	A solution-phase synthesis method to highly active Pt-Co/C electrocatalysts for proton exchange membrane fuel cell. <i>Journal of Power Sources</i> , 2010 , 195, 2534-2540	8.9	43
30	Dual poroelastic response of a coal seam to CO2 injection. <i>International Journal of Greenhouse Gas Control</i> , 2010 , 4, 668-678	4.2	146
29	Impact of CO2 injection and differential deformation on CO2 injectivity under in-situ stress conditions. <i>International Journal of Coal Geology</i> , 2010 , 81, 97-108	5.5	78

28	Evaluation of stress-controlled coal swelling processes. <i>International Journal of Coal Geology</i> , 2010 , 83, 446-455	5.5	110
27	Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. <i>Carbon</i> , 2010 , 48, 995-1003	10.4	76
26	Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. <i>Carbon</i> , 2010 , 48, 3057-3065	10.4	323
25	Nafion/Acid Functionalized Mesoporous Silica Nanocomposite Membrane for High Temperature PEMFCs. <i>ECS Transactions</i> , 2009 , 25, 1151-1157	1	4
24	Platinum/Tin Oxide - Single Walled Carbon Nanotube Electrocatalysts for Direct Ethanol Fuel Cell. <i>ECS Transactions</i> , 2009 , 25, 1169-1176	1	4
23	A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6499-502	16.4	510
22	Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 21008-21013	3.8	322
21	Polyaniline-derived Non-Precious Catalyst for the Polymer Electrolyte Fuel Cell Cathode. <i>ECS Transactions</i> , 2009 , 16, 159-170	1	197
20	Insights into the Nature of Synergistic Effects in Proton-Conducting 4,4¶H,1H-Bitriazole-Poly(ethylene oxide) Composites. <i>Chemistry of Materials</i> , 2009 , 21, 4645-4652	9.6	10
19	Electrochemical Synthesis of Perfluorinated Ion Doped Conducting Polyaniline Films Consisting of Helical Fibers and their Reversible Switching between Superhydrophobicity and Superhydrophilicity. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 832-838	4.8	70
18	Ionothermal synthesis of oriented zeolite AEL films and their application as corrosion-resistant coatings. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 525-8	16.4	123
17	Ionothermal Synthesis of Oriented Zeolite AEL Films and Their Application as Corrosion-Resistant Coatings. <i>Angewandte Chemie</i> , 2008 , 120, 535-538	3.6	19
16	Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 4060-3	16.4	720
15	Sulfonated Ordered Mesoporous Carbon as a Stable and Highly Active Protonic Acid Catalyst. <i>Chemistry of Materials</i> , 2007 , 19, 2395-2397	9.6	228
14	Durability and Activity Study of Single-Walled, Double-Walled and Multi-Walled Carbon Nanotubes Supported Pt Catalyst for PEMFCs. <i>ECS Transactions</i> , 2007 , 11, 1289-1299	1	18
13	Carbon Nanotube and Carbon Black Supported Platinum Nanocomposites as Oxygen Reduction Electrocatalysts for Polymer Electrolyte Fuel Cells. <i>Electrochemistry</i> , 2007 , 75, 705-708	1.2	8
12	High Performance Hydrogen Fuel Cells with Ultralow Pt Loading Carbon Nanotube Thin Film Catalysts [] Journal of Physical Chemistry C, 2007, 111, 17901-17904	3.8	89
11	Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15353-8	3.4	146

LIST OF PUBLICATIONS

10	Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. <i>Nanotechnology</i> , 2006 , 17, 5254-5259	3.4	123
9	Nafion/Zeolite Nanocomposite Membrane by in Situ Crystallization for a Direct Methanol Fuel Cell. <i>Chemistry of Materials</i> , 2006 , 18, 5669-5675	9.6	258
8	Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. <i>Journal of Power Sources</i> , 2006 , 158, 154-159	8.9	526
7	Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell. <i>Langmuir</i> , 2005 , 21, 9386-9	4	182
6	Synthesis of Template-Free Zeolite Nanocrystals by Reverse Microemulsion Microwave Method. <i>Chemistry of Materials</i> , 2005 , 17, 2262-2266	9.6	71
5	Molecular sieving in a nanoporous b-oriented pure-silica-zeolite MFI monocrystal film. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4122-3	16.4	86
4	TEM investigation of formation mechanism of monocrystal-thick b-oriented pure silica zeolite MFI film. <i>Journal of the American Chemical Society</i> , 2004 , 126, 10732-7	16.4	62
3	Eutectic Etching toward In-Plane Porosity Manipulation of Cl-Terminated MXene for High-Performance Dual-Ion Battery Anode. <i>Advanced Energy Materials</i> ,2102493	21.8	8
2	Engineering Oversaturated Fe-N5 Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. <i>Angewandte Chemie</i> ,	3.6	1
1	Finely-Dispersed Ni 2 Co Nanoalloys on Flower-Like Graphene Microassembly Empowering a Bi-Service Matrix for Superior LithiumBulfur Electrochemistry. <i>Advanced Functional Materials</i> ,2202853	15.6	0