Zhongwei Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/2769229/zhongwei-chen-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

168 387 32,214 95 h-index g-index citations papers 38,014 7.84 10.9 407 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
387	30 Years of Lithium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1800561	24	1694
386	A review on non-precious metal electrocatalysts for PEM fuel cells. <i>Energy and Environmental Science</i> , 2011 , 4, 3167	35.4	1495
385	Batteries and fuel cells for emerging electric vehicle markets. <i>Nature Energy</i> , 2018 , 3, 279-289	62.3	1176
384	A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. <i>Energy and Environmental Science</i> , 2014 , 7, 1564	35.4	860
383	Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. <i>Advanced Materials</i> , 2017 , 29, 1604685	24	806
382	Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 4060-3	16.4	720
381	Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. <i>Journal of Power Sources</i> , 2006 , 158, 154-159	8.9	526
380	A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6499-502	16.4	510
379	Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. <i>Small</i> , 2018 , 14, 1702737	11	433
378	One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4754	13	431
377	The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. <i>Energy and Environmental Science</i> , 2016 , 9, 357-390	35.4	387
376	Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. <i>Nano Letters</i> , 2012 , 12, 1946-52	11.5	350
375	Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 20774-	2 07 81	346
374	Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metallir batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7107-7134	13	337
373	Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. <i>Carbon</i> , 2010 , 48, 3057-3065	10.4	323
372	Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 21008-21013	3.8	322
371	Ultrathin, transparent, and flexible graphene films for supercapacitor application. <i>Applied Physics Letters</i> , 2010 , 96, 253105	3.4	316

370	Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. <i>Nano Letters</i> , 2013 , 13, 5467-73	11.5	305
369	Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithiumBulfur batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 2533-2538	35.4	300
368	Revisiting the Role of Polysulfides in Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2018 , 30, e1705590	24	291
367	Interactions of multiple processes during CBM extraction: A critical review. <i>International Journal of Coal Geology</i> , 2011 , 87, 175-189	5.5	279
366	New Concepts in Electrolytes. <i>Chemical Reviews</i> , 2020 , 120, 6783-6819	68.1	267
365	Nafion/Zeolite Nanocomposite Membrane by in Situ Crystallization for a Direct Methanol Fuel Cell. <i>Chemistry of Materials</i> , 2006 , 18, 5669-5675	9.6	258
364	Free-Standing Layer-By-Layer Hybrid Thin Film of Graphene-MnO2 Nanotube as Anode for Lithium Ion Batteries. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1855-1860	6.4	251
363	Graphene-Based Flexible Supercapacitors: Pulse-Electropolymerization of Polypyrrole on Free-Standing Graphene Films. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 17612-17620	3.8	234
362	Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17056-8	16.4	230
361	Sulfonated Ordered Mesoporous Carbon as a Stable and Highly Active Protonic Acid Catalyst. <i>Chemistry of Materials</i> , 2007 , 19, 2395-2397	9.6	228
360	Advanced Extremely Durable 3D Bifunctional Air Electrodes for Rechargeable Zinc-Air Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1301389	21.8	224
359	Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4977-82	16.4	218
358	Recent Progress in Electrically Rechargeable Zinc-Air Batteries. Advanced Materials, 2019, 31, e1805230	24	204
357	Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries. <i>Advanced Materials</i> , 2015 , 27, 5617-22	24	200
356	Polyaniline-derived Non-Precious Catalyst for the Polymer Electrolyte Fuel Cell Cathode. <i>ECS Transactions</i> , 2009 , 16, 159-170	1	197
355	A flexible solid-state electrolyte for wide-scale integration of rechargeable zinclir batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 663-670	35.4	194
354	Stringed Bube on cubelhanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithiumBulfur batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 2372-2381	35.4	193
353	Development and Simulation of Sulfur-doped Graphene Supported Platinum with Exemplary Stability and Activity Towards Oxygen Reduction. <i>Advanced Functional Materials</i> , 2014 , 24, 4325-4336	15.6	184

352	Interpenetrating Triphase Cobalt-Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Long-Lasting Rechargeable ZnAir Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702900	21.8	183
351	Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell. <i>Langmuir</i> , 2005 , 21, 9386-9	4	182
350	Hollow Multivoid Nanocuboids Derived from Ternary Ni Coll e Prussian Blue Analog for Dual-Electrocatalysis of Oxygen and Hydrogen Evolution Reactions. <i>Advanced Functional Materials</i> , 2018 , 28, 1802129	15.6	180
349	Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery. <i>Nano Letters</i> , 2016 , 16, 1794-802	11.5	175
348	Conductive Nanocrystalline Niobium Carbide as High-Efficiency Polysulfides Tamer for Lithium-Sulfur Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1704865	15.6	173
347	In Situ Polymer Graphenization Ingrained with Nanoporosity in a Nitrogenous Electrocatalyst Boosting the Performance of Polymer-Electrolyte-Membrane Fuel Cells. <i>Advanced Materials</i> , 2017 , 29, 1604456	24	161
346	Controllable Urchin-Like NiCo2S4 Microsphere Synergized with Sulfur-Doped Graphene as Bifunctional Catalyst for Superior Rechargeable ZnAir Battery. <i>Advanced Functional Materials</i> , 2018 , 28, 1706675	15.6	160
345	Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries. <i>Nature Communications</i> , 2018 , 9, 705	17.4	159
344	Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. <i>ACS Applied Materials & District Materials</i> (2015), 7, 13044-52	9.5	159
343	Flexible Rechargeable Zinc-Air Batteries through Morphological Emulation of Human Hair Array. <i>Advanced Materials</i> , 2016 , 28, 6421-8	24	154
342	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. <i>Chemical Society Reviews</i> , 2020 , 49, 8790-8839	58.5	153
341	Sulfur Atoms Bridging Few-Layered MoS2 with S-Doped Graphene Enable Highly Robust Anode for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1501106	21.8	152
340	Dual poroelastic response of a coal seam to CO2 injection. <i>International Journal of Greenhouse Gas Control</i> , 2010 , 4, 668-678	4.2	146
339	Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15353-8	3.4	146
338	Oxygen Reduction on Graphenellarbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur. <i>ACS Catalysis</i> , 2014 , 4, 2734-2740	13.1	145
337	Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. <i>Nano Energy</i> , 2014 , 10, 192-200	17.1	145
336	Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. <i>Electrochimica Acta</i> , 2012 , 69, 295-300	6.7	145
335	Nitrogen-Doped Carbon Nanotubes as Platinum Catalyst Supports for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21982-21988	3.8	145

(2011-2015)

334	sodium-ion batteries anodes. <i>Nano Energy</i> , 2015 , 15, 746-754	17.1	144
333	3-Dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3343-3350	13	142
332	Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 902-10	9.5	136
331	Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook 2020 , 2, 6-43		136
330	Co-N Decorated Hierarchically Porous Graphene Aerogel for Efficient Oxygen Reduction Reaction in Acid. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2016 , 8, 6488-95	9.5	136
329	Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries. <i>Nature Communications</i> , 2015 , 6, 8597	17.4	133
328	Highly Active Porous Carbon-Supported Nonprecious Metal N Electrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8048-8053	3.8	133
327	3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable Lithium Bulfur Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702381	21.8	132
326	Defect Engineering of Chalcogen-Tailored Oxygen Electrocatalysts for Rechargeable Quasi-Solid-State Zinc-Air Batteries. <i>Advanced Materials</i> , 2017 , 29, 1702526	24	131
325	Two-Dimensional Phosphorus-Doped Carbon Nanosheets with Tunable Porosity for Oxygen Reactions in Zinc-Air Batteries. <i>ACS Catalysis</i> , 2018 , 8, 2464-2472	13.1	129
324	Strings of Porous Carbon Polyhedrons as Self-Standing Cathode Host for High-Energy-Density Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6176-6180	16.4	127
323	The Current State of Aqueous Zn-Based Rechargeable Batteries. ACS Energy Letters, 2020 , 5, 1665-1675	20.1	127
322	Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes. <i>Nano Energy</i> , 2016 , 19, 187-197	17.1	124
321	Determination of Iron Active Sites in Pyrolyzed Iron-Based Catalysts for the Oxygen Reduction Reaction. <i>ACS Catalysis</i> , 2012 , 2, 2761-2768	13.1	124
320	Evolution of coal permeability from stress-controlled to displacement-controlled swelling conditions. <i>Fuel</i> , 2011 , 90, 2987-2997	7.1	124
319	Ionothermal synthesis of oriented zeolite AEL films and their application as corrosion-resistant coatings. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 525-8	16.4	123
318	Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. <i>Nanotechnology</i> , 2006 , 17, 5254-5259	3.4	123
317	Effect of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Experimental observations. <i>International Journal of Greenhouse Gas Control</i> , 2011 , 5, 1284	-4 2 93	122

316	Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. <i>Chemical Society Reviews</i> , 2020 , 49, 5407-5445	58.5	121
315	Ni-Rich/Co-Poor Layered Cathode for Automotive Li-Ion Batteries: Promises and Challenges. <i>Advanced Energy Materials</i> , 2020 , 10, 1903864	21.8	119
314	Nitrogen doped carbon nanotubes synthesized from aliphatic diamines for oxygen reduction reaction. <i>Electrochimica Acta</i> , 2011 , 56, 1570-1575	6.7	119
313	3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries. <i>Small</i> , 2016 , 12, 2707-14	11	117
312	Enhanced Reversible Sodium-Ion Intercalation by Synergistic Coupling of Few-Layered MoS2 and S-Doped Graphene. <i>Advanced Functional Materials</i> , 2017 , 27, 1702562	15.6	116
311	Laminated Cross-Linked Nanocellulose/Graphene Oxide Electrolyte for Flexible Rechargeable Zinc A ir Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1600476	21.8	115
310	Impact of transition from local swelling to macro swelling on the evolution of coal permeability. <i>International Journal of Coal Geology</i> , 2011 , 88, 31-40	5.5	114
309	Evaluation of stress-controlled coal swelling processes. <i>International Journal of Coal Geology</i> , 2010 , 83, 446-455	5.5	110
308	Modelling and optimization of enhanced coalbed methane recovery using CO2/N2 mixtures. <i>Fuel</i> , 2019 , 253, 1114-1129	7.1	108
307	Multigrain platinum nanowires consisting of oriented nanoparticles anchored on sulfur-doped graphene as a highly active and durable oxygen reduction electrocatalyst. <i>Advanced Materials</i> , 2015 , 27, 1229-34	24	106
306	Linking gas-sorption induced changes in coal permeability to directional strains through a modulus reduction ratio. <i>International Journal of Coal Geology</i> , 2010 , 83, 21-30	5.5	104
305	Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding?. <i>Energy and Environmental Science</i> , 2017 , 10, 296-305	35.4	103
304	Engineered Si electrode nanoarchitecture: a scalable postfabrication treatment for the production of next-generation Li-ion batteries. <i>Nano Letters</i> , 2014 , 14, 277-83	11.5	103
303	Nitrogen-doped carbon nanotubes as air cathode catalysts in zinc-air battery. <i>Electrochimica Acta</i> , 2011 , 56, 5080-5084	6.7	102
302	Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3754-3764	13	101
301	Influence of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Model development and analysis. <i>International Journal of Greenhouse Gas Control</i> , 2012 , 8, 101-110	4.2	101
300	Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous LiD2 Batteries: Recent Progress and Perspective. <i>Advanced Energy Materials</i> , 2018 , 8, 1800348	21.8	101
299	CNT-threaded N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and LiB battery. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9775-9784	13	99

298	An all-aqueous redox flow battery with unprecedented energy density. <i>Energy and Environmental Science</i> , 2018 , 11, 2010-2015	35.4	99	
297	Design of Highly Active Perovskite Oxides for Oxygen Evolution Reaction by Combining Experimental and ab Initio Studies. <i>ACS Catalysis</i> , 2015 , 5, 4337-4344	13.1	98	
296	Dual phase Li4Ti5O12TiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries. <i>Nano Energy</i> , 2014 , 9, 383-391	17.1	97	
295	Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. <i>Nano Energy</i> , 2017 , 40, 88-94	17.1	96	
294	Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium-Sulfur Batteries. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3583-3592	16.4	95	
293	Effects of non-Darcy flow on the performance of coal seam gas wells. <i>International Journal of Coal Geology</i> , 2012 , 93, 62-74	5.5	95	
292	Preferentially Engineering FeN Edge Sites onto Graphitic Nanosheets for Highly Active and Durable Oxygen Electrocatalysis in Rechargeable Zn-Air Batteries. <i>Advanced Materials</i> , 2020 , 32, e2004900	24	94	
291	Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6340-6350	13	93	
290	A dual poroelastic model for CO2-enhanced coalbed methane recovery. <i>International Journal of Coal Geology</i> , 2011 , 86, 177-189	5.5	93	
289	Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery. <i>Nature Communications</i> , 2020 , 11, 1952	17.4	93	
288	Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction. <i>Electrochimica Acta</i> , 2010 , 55, 4799-4804	6.7	92	
287	Gas Pickering Emulsion Templated Hollow Carbon for High Rate Performance Lithium Sulfur Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 8408-8417	15.6	90	
286	Nanotechnology for environmentally sustainable electromobility. <i>Nature Nanotechnology</i> , 2016 , 11, 10)3 9 &1ø5	5 1 90	
285	High Performance Hydrogen Fuel Cells with Ultralow Pt Loading Carbon Nanotube Thin Film Catalysts <i>Journal of Physical Chemistry C</i> , 2007 , 111, 17901-17904	3.8	89	
284	Molecular sieving in a nanoporous b-oriented pure-silica-zeolite MFI monocrystal film. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4122-3	16.4	86	
283	Multidimensional Ordered Bifunctional Air Electrode Enables Flash Reactants Shuttling for High-Energy Flexible Zn-Air Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1900911	21.8	85	
282	Hierarchical Defective Fe3-xC@C Hollow Microsphere Enables Fast and Long-Lasting LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2001165	15.6	85	
281	Rational design of tailored porous carbon-based materials for CO2 capture. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20985-21003	13	84	

280	Cationic and anionic redox in lithium-ion based batteries. Chemical Society Reviews, 2020, 49, 1688-1709	5 58.5	84
279	Pore structure characterization of coal by synchrotron radiation nano-CT. <i>Fuel</i> , 2018 , 215, 102-110	7.1	84
278	The Dual-Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward High-Performance Liß Full Cell. <i>Advanced Energy Materials</i> , 2018 , 8, 1802561	21.8	83
277	Carbon-Coated Silicon Nanowires on Carbon Fabric as Self-Supported Electrodes for Flexible Lithium-Ion Batteries. <i>ACS Applied Materials & Electrodes</i> , 2017, 9, 9551-9558	9.5	81
276	Free-Standing Functionalized Graphene Oxide Solid Electrolytes in Electrochemical Gas Sensors. <i>Advanced Functional Materials</i> , 2016 , 26, 1729-1736	15.6	81
275	"Ship in a Bottle" Design of Highly Efficient Bifunctional Electrocatalysts for Long-Lasting Rechargeable Zn-Air Batteries. <i>ACS Nano</i> , 2019 , 13, 7062-7072	16.7	78
274	Titanium nitridellarbon nanotube corellhell composites as effective electrocatalyst supports for low temperature fuel cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 3727		78
273	Impact of CO2 injection and differential deformation on CO2 injectivity under in-situ stress conditions. <i>International Journal of Coal Geology</i> , 2010 , 81, 97-108	5.5	78
272	Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries. <i>ChemSusChem</i> , 2015 , 8, 1058-65	8.3	77
271	Oxygen Reduction Reaction Using MnO2Nanotubes/Nitrogen-Doped Exfoliated Graphene Hybrid Catalyst for Li-O2Battery Applications. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A344-A350	3.9	77
270	Synthesis and Characterization of Fe2O3 for H2S Removal at Low Temperature. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 8469-8478	3.9	76
269	Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. <i>Carbon</i> , 2010 , 48, 995-1003	10.4	76
268	High durable PEK-based anion exchange membrane for elevated temperature alkaline fuel cells. Journal of Membrane Science, 2012 , 394-395, 193-201	9.6	74
267	Activated and nitrogen-doped exfoliated graphene as air electrodes for metallir battery applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2639	13	74
266	Highly durable and active non-precious air cathode catalyst for zinc air battery. <i>Journal of Power Sources</i> , 2011 , 196, 3673-3677	8.9	74
265	Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells. <i>Journal of Power Sources</i> , 2015 , 273, 697-706	8.9	73
264	Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores. <i>Fuel</i> , 2017 , 210, 217-226	7.1	73
263	Tuning Shell Numbers of Transition Metal Oxide Hollow Microspheres toward Durable and Superior Lithium Storage. <i>ACS Nano</i> , 2017 , 11, 11521-11530	16.7	72

262	Quaternized graphene oxide nanocomposites as fast hydroxide conductors. ACS Nano, 2015, 9, 2028-37	7 16.7	72
261	Sensitivity analysis on the microwave heating of coal: A coupled electromagnetic and heat transfer model. <i>Applied Thermal Engineering</i> , 2017 , 126, 949-962	5.8	71
260	Nitrogen-doped carbon nanocones encapsulating with nickellobalt mixed phosphides for enhanced hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16568-16572	13	71
259	Synthesis of Template-Free Zeolite Nanocrystals by Reverse Microemulsion Microwave Method. <i>Chemistry of Materials</i> , 2005 , 17, 2262-2266	9.6	71
258	Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode electrode interaction in high-power Li-ion batteries. <i>Nano Energy</i> , 2016 , 24, 72-77	17.1	71
257	Highly active Co-doped LaMnO3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zincBir batteries. <i>Electrochemistry Communications</i> , 2015 , 60, 38-41	5.1	70
256	Electrochemical Synthesis of Perfluorinated Ion Doped Conducting Polyaniline Films Consisting of Helical Fibers and their Reversible Switching between Superhydrophobicity and Superhydrophilicity. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 832-838	4.8	70
255	Morphology and composition controlled platinumBobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. <i>Nano Energy</i> , 2014 , 10, 135-143	17.1	68
254	Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 6073-6081	6.7	68
253	Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9461-9467	13	66
252	Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits: A review. <i>Chemical Engineering Research and Design</i> , 2019 , 127, 103-124	5.5	65
251	High-performance flexible electrode based on electrodeposition of polypyrrole/MnO2 on carbon cloth for supercapacitors. <i>Journal of Power Sources</i> , 2016 , 326, 357-364	8.9	65
250	Iron- and Nitrogen-Functionalized Graphene Nanosheet and Nanoshell Composites as a Highly Active Electrocatalyst for Oxygen Reduction Reaction. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 2650	1 <i>-</i> 3:850	8 ⁶⁵
249	Hierarchical Porous Double-Shelled Electrocatalyst with Tailored Lattice Alkalinity toward Bifunctional Oxygen Reactions for Metal Bifunction Bifun	20.1	64
248	Recent progress in non-precious metal catalysts for PEM fuel cell applications. <i>Canadian Journal of Chemical Engineering</i> , 2013 , 91, 1881-1895	2.3	64
247	Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery. <i>Journal of Power Sources</i> , 2012 , 212, 66-72	8.9	63
246	Hydrogen sulfide adsorption on nano-sized zinc oxide/reduced graphite oxide composite at ambient condition. <i>Applied Surface Science</i> , 2013 , 276, 646-652	6.7	63
245	Sn/SnO2 embedded in mesoporous carbon nanocomposites as negative electrode for lithium ion batteries. <i>Electrochimica Acta</i> , 2013 , 87, 844-852	6.7	62

244	TEM investigation of formation mechanism of monocrystal-thick b-oriented pure silica zeolite MFI film. <i>Journal of the American Chemical Society</i> , 2004 , 126, 10732-7	16.4	62
243	Layer-Based Heterostructured Cathodes for Lithium-Ion and Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1808522	15.6	61
242	Defect-Enriched Nitrogen Doped-Graphene Quantum Dots Engineered NiCo S Nanoarray as High-Efficiency Bifunctional Catalyst for Flexible Zn-Air Battery. <i>Small</i> , 2019 , 15, e1903610	11	61
241	Morphologically controlled Co3O4 nanodisks as practical bi-functional catalyst for rechargeable zinc battery applications. <i>Electrochemistry Communications</i> , 2014 , 43, 109-112	5.1	61
240	Controlled growth of platinum nanowire arrays on sulfur doped graphene as high performance electrocatalyst. <i>Scientific Reports</i> , 2013 , 3, 2431	4.9	61
239	Complex evolution of coal permeability during CO2 injection under variable temperatures. <i>International Journal of Greenhouse Gas Control</i> , 2012 , 9, 281-293	4.2	61
238	Facile Synthesis and Evaluation of Nanofibrous Iron©arbon Based Non-Precious Oxygen Reduction Reaction Catalysts for Li©2 Battery Applications. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 9427-9432	3.8	61
237	Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. <i>Nature Communications</i> , 2021 , 12, 186	17.4	61
236	Sulfur Nanogranular Film-Coated Three-Dimensional Graphene Sponge-Based High Power Lithium Sulfur Battery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 1984-91	9.5	60
235	Electrospun Iron B olyaniline B olyacrylonitrile Derived Nanofibers as Non B recious Oxygen Reduction Reaction Catalysts for PEM Fuel Cells. <i>Electrochimica Acta</i> , 2014 , 139, 111-116	6.7	60
234	Engineering the Conductive Network of Metal Oxide-Based Sulfur Cathode toward Efficient and Longevous LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2002076	21.8	60
233	Phase evolution of conversion-type electrode for lithium ion batteries. <i>Nature Communications</i> , 2019 , 10, 2224	17.4	59
232	Characterisation of mechanics and flow fields around in-seam methane gas drainage borehole for preventing ventilation air leakage: A case study. <i>International Journal of Coal Geology</i> , 2016 , 162, 123-13	3 § ·5	59
231	Hierarchical Li4Ti5O12-TiO2 composite microsphere consisting of nanocrystals for high power Li-ion batteries. <i>Electrochimica Acta</i> , 2013 , 108, 104-111	6.7	59
230	Graphene wrapped silicon nanocomposites for enhanced electrochemical performance in lithium ion batteries. <i>Electrochimica Acta</i> , 2014 , 130, 127-134	6.7	58
229	Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography. <i>Journal of Power Sources</i> , 2016 , 307, 496-509	8.9	57
228	All-in-One Graphene Based Composite Fiber: Toward Wearable Supercapacitor. <i>ACS Applied Materials & ACS Applied & ACS Applie</i>	9.5	57
227	A coupled electromagnetic irradiation, heat and mass transfer model for microwave heating and its numerical simulation on coal. <i>Fuel Processing Technology</i> , 2018 , 177, 237-245	7.2	56

(2015-2015)

226	Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. <i>RSC Advances</i> , 2015 , 5, 6195-6206	3.7	55
225	Cubic spinel cobalt oxide/multi-walled carbon nanotube composites as an efficient bifunctionalelectrocatalyst for oxygen reaction. <i>Electrochemistry Communications</i> , 2013 , 34, 125-129	5.1	54
224	Bifunctionally active and durable hierarchically porous transition metal-based hybrid electrocatalyst for rechargeable metal-air batteries. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 677-	6 87 .8	53
223	Impact of creep on the evolution of coal permeability and gas drainage performance. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 33, 469-482	4.6	53
222	Nitrogen and Sulfur Co-doped Mesoporous Carbon Materials as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. <i>Electrochimica Acta</i> , 2014 , 145, 259-269	6.7	52
221	Bi-Functional N-Doped CNT/Graphene Composite as Highly Active and Durable Electrocatalyst for Metal Air Battery Applications. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A2244-A2250	3.9	52
220	Highly Durable Graphene Nanosheet Supported Iron Catalyst for Oxygen Reduction Reaction in PEM Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2011 , 159, B86-B89	3.9	52
219	Laboratory Study of Gas Permeability and Cleat Compressibility for CBM/ECBM in Chinese Coals. Energy Exploration and Exploitation, 2012 , 30, 451-476	2.1	52
218	Defect Engineering for Expediting Liß Chemistry: Strategies, Mechanisms, and Perspectives. <i>Advanced Energy Materials</i> , 2021 , 11, 2100332	21.8	52
217	Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries. <i>ChemSusChem</i> , 2015 , 8, 3129-38	8.3	51
216	Design of a sorbent to enhance reactive adsorption of hydrogen sulfide. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2014 , 6, 21167-77	9.5	51
215	Highly Active Graphene Nanosheets Prepared via Extremely Rapid Heating as Efficient Zinc-Air Battery Electrode Material. <i>Journal of the Electrochemical Society</i> , 2013 , 160, F910-F915	3.9	51
214	Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	50
213	Impact of coal matrix strains on the evolution of permeability. Fuel, 2017, 189, 270-283	7.1	49
212	d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. <i>Nature Communications</i> , 2020 , 11, 5858	17.4	49
211	Highly active Pt R u nanowire network catalysts for the methanol oxidation reaction. <i>Catalysis Communications</i> , 2012 , 18, 51-54	3.2	48
210	Reassessment of coal permeability evolution using steady-state flow methods: The role of flow regime transition. <i>International Journal of Coal Geology</i> , 2019 , 211, 103210	5.5	47
209	Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors. <i>Carbon</i> , 2015 , 93, 258-265	10.4	47

208	Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction. <i>Nano Energy</i> , 2016 , 19, 27-38	17.1	46
207	Building sponge-like robust architectures of CNTgrapheneBi composites with enhanced rate and cycling performance for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3962-3967	13	44
206	Cyanamide derived thin film on carbon nanotubes as metal free oxygen reduction reaction electrocatalyst. <i>Electrochimica Acta</i> , 2012 , 59, 8-13	6.7	44
205	Efficient Method of Designing Stable Layered Cathode Material for Sodium Ion Batteries Using Aluminum Doping. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5021-5030	6.4	44
204	Zn-free MOFs like MIL-53(Al) and MIL-125(Ti) for the preparation of defect-rich, ultrafine ZnO nanosheets with high photocatalytic performance. <i>Applied Catalysis B: Environmental</i> , 2019 , 244, 719-73	37 ^{1.8}	44
203	Selective Dibenzothiophene Adsorption on Graphene Prepared Using Different Methods. <i>Industrial & Samp; Engineering Chemistry Research</i> , 2012 , 51, 10259-10264	3.9	43
202	A solution-phase synthesis method to highly active Pt-Co/C electrocatalysts for proton exchange membrane fuel cell. <i>Journal of Power Sources</i> , 2010 , 195, 2534-2540	8.9	43
201	Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries. <i>Nanoscale</i> , 2017 , 9, 15865-15872	7.7	42
200	The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack. <i>Applied Catalysis B: Environmental</i> , 2015 , 162, 133-140	21.8	41
199	Heat-Treated Nonprecious Catalyst Using Fe and Nitrogen-Rich 2,3,7,8-Tetra(pyridin-2-yl)pyrazino[2,3-g]quinoxaline Coordinated Complex for Oxygen Reduction Reaction in PEM Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18856-18862	3.8	41
198	Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells. <i>Nanotechnology</i> , 2010 , 21, 165705	3.4	41
197	Compact high volumetric and areal capacity lithium sulfur batteries through rock salt induced nano-architectured sulfur hosts. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21435-21441	13	40
196	Characterisation of creep in coal and its impact on permeability: An experimental study. <i>International Journal of Coal Geology</i> , 2017 , 173, 200-211	5.5	39
195	Li S- or S-Based Lithium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1801190	24	39
194	A 'trimurti' heterostructured hybrid with an intimate CoO/CoxP interface as a robust bifunctional air electrode for rechargeable Zn atteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9177-9184	13	39
193	Subeutectic growth of single-crystal silicon nanowires grown on and wrapped with graphene nanosheets: high-performance anode material for lithium-ion battery. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 13757-64	9.5	38
192	Roles of coal heterogeneity on evolution of coal permeability under unconstrained boundary conditions. <i>Journal of Natural Gas Science and Engineering</i> , 2013 , 15, 38-52	4.6	38
191	Theoretical insight into highly durable iron phthalocyanine derived non-precious catalysts for oxygen reduction reactions. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19707-19716	13	37

(2017-2015)

190	Characterization of coal fines generation: A micro-scale investigation. <i>Journal of Natural Gas Science and Engineering</i> , 2015 , 27, 862-875	4.6	36
189	Theoretical and experimental studies of highly active graphene nanosheets to determine catalytic nitrogen sites responsible for the oxygen reduction reaction in alkaline media. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 976-990	13	36
188	Enhanced adsorption of hydrogen sulfide and regeneration ability on the composites of zinc oxide with reduced graphite oxide. <i>Chemical Engineering Journal</i> , 2014 , 253, 264-273	14.7	36
187	Web-like 3D Architecture of Pt Nanowires and Sulfur-Doped Carbon Nanotube with Superior Electrocatalytic Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 93-98	8.3	36
186	Recent Progress on High-Performance Cathode Materials for Zinc-Ion Batteries. <i>Small Structures</i> , 2021 , 2, 2000064	8.7	36
185	High performance porous polybenzimidazole membrane for alkaline fuel cells. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 18405-18415	6.7	35
184	Simultaneous formation of nitrogen and sulfur-doped transition metal catalysts for oxygen reduction reaction through pyrolyzing carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt. <i>Journal of Power Sources</i> , 2014 , 266, 88-98	8.9	35
183	Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells. <i>Journal of Power Sources</i> , 2014 , 262, 488-493	8.9	34
182	High Performance Porous Anode Based on Template-Free Synthesis of Co3O4 Nanowires for Lithium-Ion Batteries. <i>Electrochimica Acta</i> , 2014 , 139, 145-151	6.7	34
181	Mechanistic analysis of highly active nitrogen-doped carbon nanotubes for the oxygen reduction reaction. <i>Journal of Power Sources</i> , 2012 , 205, 215-221	8.9	34
180	Correlation between theoretical descriptor and catalytic oxygen reduction activity of graphene supported palladium and palladium alloy electrocatalysts. <i>Journal of Power Sources</i> , 2015 , 300, 1-9	8.9	33
179	Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 28604-28611	9.5	33
178	Superior performance of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119276	21.8	32
177	Experimental investigation on the impact of coal fines generation and migration on coal permeability. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 159, 257-266	4.4	32
176	Self-Supported Cobalt Nickel Nitride Nanowires Electrode for Overall Electrochemical Water Splitting. <i>Energy Technology</i> , 2017 , 5, 1908-1911	3.5	31
175	Green Solid Electrolyte with Cofunctionalized Nanocellulose/Graphene Oxide Interpenetrating Network for Electrochemical Gas Sensors. <i>Small Methods</i> , 2017 , 1, 1700237	12.8	31
174	Experimental study of coal matrix-cleat interaction under constant volume boundary condition. <i>International Journal of Coal Geology</i> , 2017 , 181, 124-132	5.5	31
173	Calendar Aging and Gas Generation in Commercial Graphite/NMC-LMO Lithium-Ion Pouch Cell. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A3469-A3483	3.9	31

172	Strings of Porous Carbon Polyhedrons as Self-Standing Cathode Host for High-Energy-Density LithiumBulfur Batteries. <i>Angewandte Chemie</i> , 2017 , 129, 6272-6276	3.6	30
171	A 3D ordered hierarchically porous non-carbon electrode for highly effective and efficient capacitive deionization. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15633-15639	13	30
170	Evolution of Coal Petrophysical Properties under Microwave Irradiation Stimulation for Different Water Saturation Conditions. <i>Energy & Different</i> 81, 2017, 31, 8852-8864	4.1	30
169	Engineered architecture of nitrogenous graphene encapsulating porous carbon with nano-channel reactors enhancing the PEM fuel cell performance. <i>Nano Energy</i> , 2017 , 42, 249-256	17.1	30
168	Nano-particle size effect on the performance of Li4Ti5O12 spinel. <i>Electrochimica Acta</i> , 2016 , 196, 33-40	6.7	29
167	Molecular Functionalization of Graphene Oxide for Next-Generation Wearable Electronics. <i>ACS Applied Materials & Discrete Applied & Discret</i>	9.5	28
166	Phosphorus and Nitrogen Centers in Doped Graphene and Carbon Nanotubes Analyzed through Solid-State NMR. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 6593-6601	3.8	27
165	Pd-decorated three-dimensional nanoporous Au/Ni foam composite electrodes for H2O2 reduction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16474-16479	13	27
164	A Combined Ordered Macro-Mesoporous Architecture Design and Surface Engineering Strategy for High-Performance Sulfur Immobilizer in Lithium-Sulfur Batteries. <i>Small</i> , 2020 , 16, e2001089	11	27
163	Effects of coal damage on permeability and gas drainage performance. <i>International Journal of Mining Science and Technology</i> , 2017 , 27, 783-786	7.1	26
162	Role of multi-seam interaction on gas drainage engineering design for mining safety and environmental benefits: Linking coal damage to permeability variation. <i>Chemical Engineering Research and Design</i> , 2018 , 114, 310-322	5.5	25
161	Effect of electrode physical and chemical properties on lithium-ion battery performance. <i>International Journal of Energy Research</i> , 2013 , 37, 1723-1736	4.5	25
160	A high performance wastewater-fed flow-photocatalytic fuel cell. <i>Journal of Power Sources</i> , 2019 , 425, 69-75	8.9	24
159	Constructing Safe and Durable High-Voltage P2 Layered Cathodes for Sodium Ion Batteries Enabled by Molecular Layer Deposition of Alucone. <i>Advanced Functional Materials</i> , 2020 , 30, 1910251	15.6	24
158	Multi-Particle Model for a Commercial Blended Lithium-Ion Electrode. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A458-A469	3.9	24
157	Highly Durable Platinum-Cobalt Nanowires by Microwave Irradiation as Oxygen Reduction Catalyst for PEM Fuel Cell. <i>Electrochemical and Solid-State Letters</i> , 2012 , 15, B83		24
156	Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2020 , 384, 123237	14.7	24
155	Anisotropic coal permeability estimation by determining cleat compressibility using mercury intrusion porosimetry and stressEtrain measurements. <i>International Journal of Coal Geology</i> , 2019 , 205–75-86	5.5	23

(2020-2020)

154	Insights into Multiphase Reactions during Self-Discharge of Li-S Batteries. <i>Chemistry of Materials</i> , 2020 , 32, 4518-4526	9.6	23	
153	Advanced Electrode Materials Comprising of Structure-Engineered Quantum Dots for High-Performance Asymmetric Micro-Supercapacitors. <i>Advanced Energy Materials</i> , 2020 , 10, 1903724	21.8	23	
152	Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure. <i>Small</i> , 2020 , 16, e1903315	11	23	
151	A highly sensitive breathable fuel cell gas sensor with nanocomposite solid electrolyte. <i>Informat</i> all <i>Materilly</i> , 2019 , 1, 234-241	23.1	23	
150	Effects of Diffusive Charge Transfer and Salt Concentration Gradient in Electrolyte on Li-ion Battery Energy and Power Densities. <i>Electrochimica Acta</i> , 2014 , 125, 117-123	6.7	23	
149	Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 568-74	9.5	23	
148	Effects of microstructure on water imbibition in sandstones using X-ray computed tomography and neutron radiography. <i>Journal of Geophysical Research: Solid Earth</i> , 2017 , 122, 4963-4981	3.6	23	
147	Characterizations of macroscopic deformation and particle crushing of crushed gangue particle material under cyclic loading: In solid backfilling coal mining. <i>Powder Technology</i> , 2019 , 343, 159-169	5.2	23	
146	Engineering Oversaturated Fe-N Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26622-26629	16.4	23	
145	Effects of structural design on the performance of electrical double layer capacitors. <i>Applied Energy</i> , 2015 , 138, 631-639	10.7	22	
144	Predicting Erosion-Induced Water Inrush of Karst Collapse Pillars Using Inverse Velocity Theory. <i>Geofluids</i> , 2018 , 2018, 1-18	1.5	22	
143	Impact of Various Parameters on the Production of Coalbed Methane. SPE Journal, 2013, 18, 910-923	3.1	22	
142	Range-extending Zinc-air battery for electric vehicle. AIMS Energy, 2018, 6, 121-145	1.8	22	
141	Fast Charging Li-Ion Batteries for a New Era of Electric Vehicles. <i>Cell Reports Physical Science</i> , 2020 , 1, 100212	6.1	22	
140	Dimensional analysis and prediction of coal fines generation under two-phase flow conditions. <i>Fuel</i> , 2017 , 194, 460-479	7.1	21	
139	Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography. <i>Journal of Applied Electrochemistry</i> , 2017 , 47, 281-293	2.6	21	
138	3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage. <i>Advanced Energy Materials</i> , 2019 , 9, 1900673	21.8	21	
137	Free nitrous acid pre-treatment enhances anaerobic digestion of waste activated sludge and rheological properties of digested sludge: A pilot-scale study. <i>Water Research</i> , 2020 , 172, 115515	12.5	21	

136	Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature. <i>Applied Surface Science</i> , 2013 , 280, 360-365	6.7	21
135	Simulation of microwave® heating effect on coal seam permeability enhancement. <i>International Journal of Mining Science and Technology</i> , 2019 , 29, 785-789	7.1	21
134	Hierarchical Core-Shell Nickel Cobaltite Chestnut-like Structures as Bifunctional Electrocatalyst for Rechargeable Metal-Air Batteries. <i>ChemSusChem</i> , 2018 , 11, 406-414	8.3	21
133	Design of ultralong single-crystal nanowire-based bifunctional electrodes for efficient oxygen and hydrogen evolution in a mild alkaline electrolyte. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10895-1090	1 ¹³	20
132	Application of Artificial Intelligence to State-of-Charge and State-of-Health Estimation of Calendar-Aged Lithium-Ion Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A605-A615	3.9	20
131	Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading. <i>Minerals (Basel, Switzerland)</i> , 2018 , 8, 244	2.4	20
130	Tin oxide - mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction. <i>Electrochimica Acta</i> , 2014 , 121, 421-427	6.7	20
129	Dynamics of a Blended Lithium-Ion Battery Electrode During Galvanostatic Intermittent Titration Technique. <i>Electrochimica Acta</i> , 2016 , 222, 1741-1750	6.7	20
128	Highly durable 3D conductive matrixed silicon anode for lithium-ion batteries. <i>Journal of Power Sources</i> , 2018 , 407, 84-91	8.9	20
127	Effects of coal properties on ventilation air leakage into methane gas drainage boreholes: Application of the orthogonal design. <i>Journal of Natural Gas Science and Engineering</i> , 2017 , 45, 88-95	4.6	19
126	Self-Assembly of Spinel Nanocrystals into Mesoporous Spheres as Bifunctionally Active Oxygen Reduction and Evolution Electrocatalysts. <i>ChemSusChem</i> , 2017 , 10, 2258-2266	8.3	19
125	Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24159-24167	13	19
124	New Interpretation of the Performance of Nickel-Based Air Electrodes for Rechargeable ZincAir Batteries. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 20153-20166	3.8	19
123	Advances in fibre optic based geotechnical monitoring systems for underground excavations. <i>International Journal of Mining Science and Technology</i> , 2019 , 29, 229-238	7.1	19
122	Molecular Trapping Strategy To Stabilize Subnanometric Pt Clusters for Highly Active Electrocatalysis. <i>ACS Catalysis</i> , 2019 , 9, 11603-11613	13.1	19
121	Ionothermal Synthesis of Oriented Zeolite AEL Films and Their Application as Corrosion-Resistant Coatings. <i>Angewandte Chemie</i> , 2008 , 120, 535-538	3.6	19
120	A MOF-Derivative Decorated Hierarchical Porous Host Enabling Ultrahigh Rates and Superior Long-Term Cycling of Dendrite-Free Zn Metal Anodes <i>Advanced Materials</i> , 2022 , e2110047	24	19
119	Multigrain electrospun nickel doped lithium titanate nanofibers with high power lithium ion storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12638-12647	13	19

118	Hierarchical Micro-Nanoclusters of Bimetallic Layered Hydroxide Polyhedrons as Advanced Sulfur Reservoir for High-Performance Lithium-Sulfur Batteries. <i>Advanced Science</i> , 2021 , 8, 2003400	13.6	19	
117	Synthesis and structural evolution of Pt nanotubular skeletons: revealing the source of the instability of nanostructured electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12663-12671	13	18	
116	Effects of Water Soaked Height on the Deformation and Crushing Characteristics of Loose Gangue Backfill Material in Solid Backfill Coal Mining. <i>Processes</i> , 2018 , 6, 64	2.9	18	
115	Durability and Activity Study of Single-Walled, Double-Walled and Multi-Walled Carbon Nanotubes Supported Pt Catalyst for PEMFCs. <i>ECS Transactions</i> , 2007 , 11, 1289-1299	1	18	
114	Model-Based Prediction of Composition of an Unknown Blended Lithium-Ion Battery Cathode. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A716-A721	3.9	17	
113	A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys. <i>Nanotechnology</i> , 2014 , 25, 445602	3.4	17	
112	Analysis on the multi-phase flow characterization in cross-measure borehole during coal hydraulic slotting. <i>International Journal of Mining Science and Technology</i> , 2018 , 28, 701-705	7.1	17	
111	Advanced Biowaste-Based Flexible Photocatalytic Fuel Cell as a Green Wearable Power Generator. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600191	6.8	16	
110	Characterization of unsaturated diffusivity of tight sandstones using neutron radiography. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 124, 693-705	4.9	16	
109	The influence of closed pores on the gas transport and its application in coal mine gas extraction. <i>Fuel</i> , 2019 , 254, 115605	7.1	16	
108	Time-dependent coal permeability: Impact of gas transport from coal cleats to matrices. <i>Journal of Natural Gas Science and Engineering</i> , 2021 , 88, 103806	4.6	16	
107	Baunal Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube Microspheres for High-Energy and Long-Lasting Lithium Bulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100497	21.8	16	
106	Effect of convective mass transfer on lead-acid battery performance. <i>Electrochimica Acta</i> , 2013 , 97, 278	-Ø8 / 8	15	
105	Synchrotron X-ray nano computed tomography based simulation of stress evolution in LiMn2O4 electrodes. <i>Electrochimica Acta</i> , 2017 , 247, 1103-1116	6.7	15	
104	Regulating the Li-Solvation Structure of Ester Electrolyte for High-Energy-Density Lithium Metal Batteries. <i>Small</i> , 2020 , 16, e2004688	11	15	
103	Hot-Chemistry Structural Phase Transformation in Single-Crystal Chalcogenides for Long-Life Lithium Ion Batteries. <i>ACS Applied Materials & District Research</i> 1, 9, 20603-20612	9.5	14	
102	Unravelling the influences of sewer-dosed iron salts on activated sludge properties with implications on settleability, dewaterability and sludge rheology. <i>Water Research</i> , 2019 , 167, 115089	12.5	14	
101	Improved Composite Solid Electrolyte through Ionic Liquid-Assisted Polymer Phase for Solid-State Lithium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A1785-A1792	3.9	14	

100	Hollow PdCu nanocubes supported by N-doped graphene: A surface science and electrochemical study. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 14305-14313	6.7	14
99	Three-Dimensional Modeling of All-Solid-State Lithium-Ion Batteries Using Synchrotron Transmission X-ray Microscopy Tomography. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 100558	3.9	14
98	Nitrogen Doped Carbon Nanotube Thin Films as Efficient Oxygen Reduction Catalyst for Alkaline Anion Exchange Membrane Fuel Cell. <i>ECS Transactions</i> , 2010 , 28, 63-68	1	14
97	Promoting Ge Alloying Reaction via Heterostructure Engineering for High Efficient and Ultra-Stable Sodium-Ion Storage. <i>Advanced Science</i> , 2020 , 7, 2002358	13.6	14
96	Localized Polysulfide Injector for the Activation of Bulk Lithium Sulfide. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2185-2189	16.4	14
95	Clean Power Generation from the Intractable Natural Coalfield Fires: Turn Harm into Benefit. <i>Scientific Reports</i> , 2017 , 7, 5302	4.9	13
94	Nitrogen and sulfur co-doped mesoporous carbon as cathode catalyst for H2/O2 alkaline membrane fuel cell laffect of catalyst/bonding layer loading. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 9159-9166	6.7	13
93	High-performance anion exchange membrane alkaline seawater electrolysis. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9586-9592	13	13
92	Modified chalcogens with a tuned nano-architecture for high energy density and long life hybrid super capacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7523-7532	13	12
91	Water sorptivity of unsaturated fractured sandstone: Fractal modeling and neutron radiography experiment. <i>Advances in Water Resources</i> , 2019 , 130, 172-183	4.7	12
90	Stimulation Techniques of Coalbed Methane Reservoirs. <i>Geofluids</i> , 2020 , 2020, 1-23	1.5	12
89	Performance enhancement of horizontal underground-to-inseam gas drainage boreholes with double-phase-grouting sealing method for coal mining safety and clean gas resource. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 76, 103179	4.6	12
88	Morphological and Electrochemical Characterization of Nanostructured Li4Ti5O12Electrodes Using Multiple Imaging Mode Synchrotron X-ray Computed Tomography. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A2861-A2871	3.9	12
87	Understanding competing effect between sorption swelling and mechanical compression on coal matrix deformation and its permeability. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2021 , 138, 104639	6	12
86	Elevated rate capability of sulfur wrapped with thin rGO layers for lithium Bulfur batteries. <i>RSC Advances</i> , 2015 , 5, 29370-29374	3.7	11
85	Nonprecious Electrocatalysts for Li?Air and Zn?Air Batteries: Fundamentals and recent advances <i>IEEE Nanotechnology Magazine</i> , 2017 , 11, 29-55	1.7	10
84	Insights into the Nature of Synergistic Effects in Proton-Conducting 4,4¶H,1H-Bitriazole-Poly(ethylene oxide) Composites. <i>Chemistry of Materials</i> , 2009 , 21, 4645-4652	9.6	10
83	Hierarchically Porous TiC MXene with Tunable Active Edges and Unsaturated Coordination Bonds for Superior Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2021 ,	16.7	10

82	Coal permeability models for enhancing performance of clean gas drainage: A review. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 199, 108283	4.4	10
81	High performance organic sodium-ion hybrid capacitors based on nano-structured disodium rhodizonate rivaling inorganic hybrid capacitors. <i>Green Chemistry</i> , 2018 , 20, 4920-4931	10	10
80	Design Zwitterionic Amorphous Conjugated Micro-/Mesoporous Polymer Assembled Nanotentacle as Highly Efficient Sulfur Electrocatalyst for Lithium-Sulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101926	21.8	10
79	Linker-Compensated Metal-Organic Framework with Electron Delocalized Metal Sites for Bifunctional Oxygen Electrocatalysis <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	10
78	A facile self-templating synthesis of carbon frameworks with tailored hierarchical porosity for enhanced energy storage performance. <i>Chemical Communications</i> , 2017 , 53, 5028-5031	5.8	9
77	Supramolecular preorganization effect to access single cobalt sites for enhanced photocatalytic hydrogen evolution and nitrogen fixation. <i>Chemical Engineering Journal</i> , 2020 , 394, 124822	14.7	9
76	A Polyanion Host as a Prospective High Voltage Cathode Material for Sodium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A1822-A1828	3.9	9
75	Flow field characters near fracture entrance in supercritical carbon dioxide sand fracturing 2019 , 9, 999	-1009	9
74	Manganese-Based Non-Precious Metal Catalyst for Oxygen Reduction in Acidic Media. <i>ECS Transactions</i> , 2014 , 61, 35-42	1	9
73	Modeling and Upscaling of Binary Gas Coal Interactions in CO2 Enhanced Coalbed Methane Recovery. <i>Procedia Environmental Sciences</i> , 2012 , 12, 926-939		9
72	Coupled multiscale-modeling of microwave-heating-induced fracturing in shales. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2020 , 136, 104520	6	9
71	Two-Dimensional NiO@C-N Nanosheets Composite as a Superior Low-Temperature Anode Material for Advanced Lithium-/Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2020 , 7, 3616-3622	4.3	8
70	Effects of geomechanical properties of interburden on the damage-based permeability variation in the underlying coal seam. <i>Journal of Natural Gas Science and Engineering</i> , 2018 , 55, 42-51	4.6	8
69	Biomimetic design of monolithic fuel cell electrodes with hierarchical structures. <i>Nano Energy</i> , 2016 , 20, 57-67	17.1	8
68	Iron-tetracyanobenzene complex derived non-precious catalyst for oxygen reduction reaction. <i>Electrochimica Acta</i> , 2015 , 162, 224-229	6.7	8
67	Carbon Nanotube and Carbon Black Supported Platinum Nanocomposites as Oxygen Reduction Electrocatalysts for Polymer Electrolyte Fuel Cells. <i>Electrochemistry</i> , 2007 , 75, 705-708	1.2	8
66	Eutectic Etching toward In-Plane Porosity Manipulation of Cl-Terminated MXene for High-Performance Dual-Ion Battery Anode. <i>Advanced Energy Materials</i> ,2102493	21.8	8
65	Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies <i>Chemical Society Reviews</i> , 2022 ,	58.5	8

64	Charge/Discharge Asymmetry in Blended Lithium-Ion Electrodes. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A39-A47	3.9	7
63	Nitrogen-doped graphene-TiO N nanocomposite electrode for highly efficient capacitive deionization <i>RSC Advances</i> , 2019 , 9, 28186-28193	3.7	7
62	Fast production of zinclexamethylenetetramine complex microflowers as an advanced sulfur reservoir for high-performance lithium Bulfur batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5062-5	i₫ <u></u> 89	7
61	N,N?-Bis(salicylidene)ethylenediamine as a nitrogen-rich precursor to synthesize electrocatalysts with high methanol-tolerance for polymer electrolyte membrane fuel cell oxygen reduction reaction. <i>Journal of Power Sources</i> , 2014 , 260, 349-356	8.9	7
60	A new approach for selecting best development face ventilation mode based on G1-coefficient of variation method. <i>Journal of Central South University</i> , 2018 , 25, 2462-2471	2.1	7
59	Rational Design of Environmental Benign OrganicIhorganic Hybrid as a Prospective Cathode for Stable High-Voltage Sodium Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 11464-11475	3.8	6
58	Synergistic Binary Fe-Co Nanocluster Supported on Defective Tungsten Oxide as Efficient Oxygen Reduction Electrocatalyst in Zinc-Air Battery. <i>Advanced Science</i> , 2021 , 9, e2104237	13.6	6
57	Large-scale study of the effect of wellbore geometry on integrated reservoir-wellbore flow. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 35, 320-330	4.6	6
56	Quantifying the impact of capillary trapping on coal seam gas recovery. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 83, 103588	4.6	5
55	High Voltage Stability and Characterization of P2-Na0.66Mn1-yMgyO2 Cathode for Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2020 , 7, 3284-3290	4.3	5
54	Platinum-Palladium CoreBhell Nanoflower Catalyst with Improved Activity and Excellent Durability for the Oxygen Reduction Reaction. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701508	4.6	5
53	Improved Synthesis Method for a Cyanamide Derived Non-Precious ORR Catalyst for PEFCs. <i>ECS Transactions</i> , 2010 , 28, 39-46	1	5
52	Development of an integrated reservoir-wellbore model to examine the hydrodynamic behaviour of perforated pipes. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 156, 269-281	4.4	5
51	A Near-Isotropic Proton-Conducting Porous Graphene Oxide Membrane. ACS Nano, 2020, 14, 14947-149	9 50 .7	5
50	Stabilization of platinumlickel alloy nanoparticles with a sulfur-doped graphene support in polymer electrolyte membrane fuel cells. <i>RSC Advances</i> , 2016 , 6, 112226-112231	3.7	5
49	Evaluation of air blast parameters in block cave mining using particle flow code. <i>International Journal of Mining, Reclamation and Environment</i> , 2019 , 33, 87-101	2.2	5
48	Fluid Flow in Unconventional Gas Reservoirs. <i>Geofluids</i> , 2018 , 2018, 1-2	1.5	4
47	Nitrogen-Doped Activated Graphene Supported Platinum Electrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells. <i>ECS Transactions</i> , 2013 , 50, 1815-1822	1	4

46	Nanoporous Carbon-Supported Fe/Co-N Electrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells. <i>ECS Transactions</i> , 2010 , 28, 101-112	1	4
45	Nafion/Acid Functionalized Mesoporous Silica Nanocomposite Membrane for High Temperature PEMFCs. <i>ECS Transactions</i> , 2009 , 25, 1151-1157	1	4
44	Platinum/Tin Oxide - Single Walled Carbon Nanotube Electrocatalysts for Direct Ethanol Fuel Cell. <i>ECS Transactions</i> , 2009 , 25, 1169-1176	1	4
43	Testing Impact Load Cell Calculations of Material Fracture Toughness and Strength Using 3D-Printed Sandstone. <i>Geotechnical and Geological Engineering</i> , 2020 , 38, 1065-1096	1.5	4
42	Emerging Trends in Sustainable CO Management Materials Advanced Materials, 2022, e2201547	24	4
41	Reconciled Nanoarchitecture with Overlapped 2 D Anatomy for High-Energy Hybrid Supercapacitors. <i>Energy Technology</i> , 2017 , 5, 1919-1926	3.5	3
40	Scaling Compressive Strength from Mini-cylinder Specimens of Sub-bituminous Coal. <i>Rock Mechanics and Rock Engineering</i> , 2020 , 53, 2839-2853	5.7	3
39	Multifunctional Nano-Architecting of Si Electrode for High-Performance Lithium-Ion Battery Anode. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2776-A2783	3.9	3
38	Impact of capillary trapping on CSG recovery: an overlooked phenomenon. APPEA Journal, 2019, 59, 34	3 0.6	3
37	Reduction of N to NH by TiO-supported Ni cluster catalysts: a DFT study. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 16707-16717	3.6	3
36	Thin Film Polyamide Nanocomposite Membrane Decorated by Polyphenol-Assisted TiCT MXene Nanosheets for Reverse Osmosis <i>ACS Applied Materials & Decorated by Polyphenol-Assisted TiCT MXene Nanosheets for Reverse Osmosis</i>	9.5	3
35	The use of short impact load cell to derive geomechanical properties of sub-bituminous coal and mudstone. <i>Journal of Natural Gas Science and Engineering</i> , 2019 , 72, 103018	4.6	2
34	Conformal formation of Carbon-TiOX matrix encapsulating silicon for high-performance lithium-ion battery anode. <i>Journal of Power Sources</i> , 2018 , 399, 98-104	8.9	2
33	Effect of Different Surface Morphologies and Nitrogen Contents on the Electrochemical Activity of Nitrogen Doped Carbon Nanotubes towards Oxygen Reduction Reaction for Low Temperature Fuel Cells. <i>ECS Transactions</i> , 2010 , 28, 55-63	1	2
32	Impact of Rock Microstructures on the Supercritical CO2 Enhanced Gas Recovery 2010,		2
31	Fibre Optic Sensing Based Slope Crest Tension Crack Monitoring System for Surface Mines 2017 ,		2
30	One-Step Synthesized Tungsten Oxide/Carbon Nanotube Composites as Pt Catalyst Supports for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. <i>Journal of Nanoengineering and Nanomanufacturing</i> , 2011 , 1, 280-286		2
29	Towards the development of a baseline for surface movement in the Surat Cumulative Management Area. <i>APPEA Journal</i> , 2019 , 59, 95	0.6	2

28	Applying low-salinity water to alter wettability in carbonate oil reservoirs: an experimental study. <i>Journal of Petroleum Exploration and Production</i> , 2020 , 11, 451	2.2	2
27	Interaction of Cleat-Matrix on Coal Permeability from Experimental Observations and Numerical Analysis. <i>Geofluids</i> , 2019 , 2019, 1-15	1.5	2
26	Radial Permeability Measurements for Shale Using Variable Pressure Gradients. <i>Acta Geologica Sinica</i> , 2020 , 94, 269-279	0.7	2
25	A Novel Design of High-Temperature Polymer Electrolyte Membrane Acetone Fuel Cell Sensor. <i>Sensors and Actuators B: Chemical</i> , 2021 , 329, 129006	8.5	2
24	Highly Efficient Removal of Suspended Solid Pollutants from Wastewater by Magnetic Fe3O4-Graphene Oxides Nanocomposite. <i>ChemistrySelect</i> , 2018 , 3, 11643-11648	1.8	2
23	Experimental study on radon exhalation characteristics of coal samples under varying gas pressures. <i>Results in Physics</i> , 2018 , 10, 1006-1014	3.7	2
22	Enhancing anaerobic digestion using free nitrous acid: Identifying the optimal pre-treatment condition in continuous operation. <i>Water Research</i> , 2021 , 205, 117694	12.5	2
21	Modelling of shaft based processes. <i>Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy</i> , 2020 , 129, 157-165	0.8	1
20	Predicting the radial heat transfer in the wellbore of cryogenic nitrogen fracturing: Insights into stimulating underground reservoir. <i>Energy Science and Engineering</i> , 2020 , 8, 582-591	3.4	1
19	Highly Anion-Conducting Porous Polymer Electrolyte Membrane for Alkaline Fuel Cells. <i>ECS Transactions</i> , 2013 , 50, 2083-2089	1	1
18	Electrocatalysts: Multigrain Platinum Nanowires Consisting of Oriented Nanoparticles Anchored on Sulfur-Doped Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst (Adv. Mater. 7/2015). <i>Advanced Materials</i> , 2015 , 27, 1134-1134	24	1
17	Batteries: Flexible High-Energy Polymer-Electrolyte-Based Rechargeable ZincAir Batteries (Adv. Mater. 37/2015). <i>Advanced Materials</i> , 2015 , 27, 5623-5623	24	1
16	Electrospun Iron/Polyacrylonitrile Derived Nanofibrous Catalysts for Oxygen Reduction Reaction. <i>ECS Transactions</i> , 2013 , 50, 1807-1814	1	1
15	Multiphysics of Coal-Gas Interactions: The Scientific Foundation for CBM Production and CO2 Storage in Coal 2010 ,		1
14	Evidence of Morphological Change in Sulfur Cathodes upon Irradiation by Synchrotron X-rays. <i>ACS Energy Letters</i> , 2022 , 7, 577-582	20.1	1
13	Frontispiece: Engineering Oversaturated Fe-N 5 Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60,	16.4	1
12	Effects of heterogenous interburden Young's modulus on permeability characteristics of underlying relieved coal seam: Implementation of damage-based permeability model. <i>Journal of Natural Gas Science and Engineering</i> , 2021 , 104317	4.6	1
11	Developing a new algorithm for numerical modeling of discrete fracture network (DFN) for anisotropic rock and percolation properties. <i>Journal of Petroleum Exploration and Production</i> , 2021 , 11, 839-856	2.2	1

LIST OF PUBLICATIONS

10	Shore hardness measurements of sub-bituminous coal microlithotypes. <i>International Journal of Coal Geology</i> , 2020 , 217, 103341	5.5	1	
9	Poroelastic solution of a wellbore in a swelling rock with non-hydrostatic stress field. <i>Journal of Rock Mechanics and Geotechnical Engineering</i> , 2021 ,	5.3	1	
8	Multiple Fracture Growth in Modified Zipper Fracturing. <i>International Journal of Geomechanics</i> , 2021 , 21,	3.1	1	
7	A Stochastic Anisotropic Coal Permeability Model Using Mercury Intrusion Porosimetry, MIP and Stress-Strain Measurements 2019 ,		1	
6	Engineering Oversaturated Fe-N5 Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. <i>Angewandte Chemie</i> ,	3.6	1	
5	An improved capillary pressure model for coal seam gas reservoirs. <i>Journal of Natural Gas Science and Engineering</i> , 2022 , 104551	4.6	О	
4	Finely-Dispersed Ni 2 Co Nanoalloys on Flower-Like Graphene Microassembly Empowering a Bi-Service Matrix for Superior LithiumBulfur Electrochemistry. <i>Advanced Functional Materials</i> ,2202853	15.6	О	
3	A fully coupled gas flow, coal deformation and thermal transport model for the injection of carbon dioxide into coal seams 2011 , 69-93			
2	Ternary Cross-Linked Multi-Functional Blended Polymers for High-Performance Silicon Anodes in Lithium-Ion Batteries. <i>ECS Meeting Abstracts</i> , 2020 , MA2020-02, 3807-3807	О		
1	Computational and Experimental Investigations of Fluid Flow in Rock Materials. <i>Advances in Civil Engineering</i> , 2018 , 2018, 1-3	1.3		