Tatyana Minyukova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2769185/publications.pdf

Version: 2024-02-01

			840776	839539	
30		340	11	18	
papers		citations	h-index	g-index	
	1				
30		30	30	291	
all docs		docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	The effect of substituting La and Co with Ca and Ti in LaCoO3/KIT-6 on its properties and possible catalytic application in syngas conversion. Materials Chemistry and Physics, 2022, 276, 125387.	4.0	2
2	Contemporary Trends in Methanol Processing. Catalysis in Industry, 2022, 14, 31-41.	0.7	2
3	Syngas conversion over perovskite-like LaCuxTi1-xO3/KIT-6 catalysts. Applied Catalysis A: General, 2020, 608, 117834.	4.3	7
4	Formation of Effective Copper-Based Catalysts of Methanol Synthesis. Kinetics and Catalysis, 2020, 61, 886-893.	1.0	2
5	Structural and morphological characteristics of CuMe2O4 spinels in reductive atmosphere depending on the chemical nature of MĐ μ (III) cations. Materials Research Bulletin, 2018, 99, 314-323.	5.2	3
6	Controlling the Catalytic Properties of Copper-Containing Oxide Catalysts. Kinetics and Catalysis, 2018, 59, 112-122.	1.0	5
7	Effect of Synthesis Conditions on the Formation of the CuCrAlO4 Spinel Structure. Journal of Structural Chemistry, 2018, 59, 1639-1647.	1.0	2
8	Study of the factors affecting the formation of copper–chromium/aluminum oxide compounds with a spinel structure. Russian Journal of Inorganic Chemistry, 2017, 62, 39-46.	1.3	3
9	Î-Alumina supported cobalt catalysts promoted by ruthenium for Fischer-Tropsch synthesis. Applied Catalysis A: General, 2017, 539, 48-58.	4.3	26
10	Cation distribution in Cu(Cr2–x Al x)O4 and Cu(Fe2–x Al x)O4 according to neutron-diffraction studies and their catalytic properties in the water-gas shift reaction. Journal of Surface Investigation, 2016, 10, 1161-1168.	0.5	7
11	Dehydrogenation of methanol over copper-containing catalysts. Catalysis in Industry, 2016, 8, 293-299.	0.7	3
12	Catalytic properties of copper chromite ferrites in water gas shift reaction and hydrogen oxidation. Kinetics and Catalysis, 2016, 57, 224-228.	1.0	8
13	Esterification of pentaerythritol by carboxylic acids. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 417-427.	1.7	4
14	Structural features of copper ferrite-chromites. Journal of Structural Chemistry, 2015, 56, 642-649.	1.0	12
15	Genesis of catalysts for methanol synthesis. Mendeleev Communications, 2014, 24, 67-74.	1.6	18
16	Role of anionic impurities in the formation of the active state of catalysts based on transition metals. Kinetics and Catalysis, 2014, 55, 502-508.	1.0	2
17	High-temperature water gas shift catalyst based on nanodisperse, metastable, partially hydrated iron oxide—two-line ferrihydrite. Kinetics and Catalysis, 2012, 53, 504-510.	1.0	1
18	Partially hydrated iron–chromium oxide catalyst for the Fischer-Tropsch synthesis. Reaction Kinetics and Catalysis Letters, 2009, 97, 371-379.	0.6	6

#	Article	IF	CITATION
19	Hydrogenation of lactic acid on reduced copper-containing catalysts. Russian Chemical Bulletin, 2009, 58, 1114-1118.	1.5	6
20	New approaches to the preparation of highly efficient chromium-containing oxide catalysts for the water gas shift reaction. Kinetics and Catalysis, 2009, 50, 837-850.	1.0	8
21	Evolution of Cu-Zn-Si oxide catalysts in the course of reduction and reoxidation as studied by in situ X-ray diffraction analysis, transmission electron microscopy, and magnetic susceptibility methods. Kinetics and Catalysis, 2008, 49, 821-830.	1.0	7
22	Planar defect of the nano-structured zinc oxide as the site for stabilization of the copper active species in Cu/ZnO catalysts. Catalysis Today, 2006, 112, 143-147.	4.4	37
23	In situ XRD and HRTEM studies on the evolution of the Cu/ZnO methanol synthesis catalyst during its reduction and re-oxidation. Physical Chemistry Chemical Physics, 2004, 6, 4522.	2.8	29
24	Non-hydrothermal synthesis of copper-, zinc- and copper-zinc hydrosilicates. Materials Research Innovations, 2001, 5, 3-11.	2.3	23
25	Copper ions distribution in synthetic copper-zinc hydrosilicate. Materials Research Innovations, 2001, 5, 74-80.	2.3	10
26	State of copper-containing catalyst for methanol synthesis in the reaction medium. Reaction Kinetics and Catalysis Letters, 1993, 51, 495-500.	0.6	21
27	Electron spectroscopic studies of copper in catalysts for methanol synthesis. Reaction Kinetics and Catalysis Letters, 1986, 30, 85-92.	0.6	18
28	Physico-chemical studies of the temperature range for the formation of anion-modified oxides. Reaction Kinetics and Catalysis Letters, 1986, 31, 403-408.	0.6	11
29	Peculiarities of formation of ZnO and CuO-based solid solutions. Reaction Kinetics and Catalysis Letters, 1982, 19, 345-349.	0.6	37
30	Nature of the active component of copper-zinc-aluminium catalyst for methanol synthesis. Reaction	0.6	20