
Angelo R Carpinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2768964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metformin disrupts insulin secretion, causes proapoptotic and oxidative effects in rat pancreatic betaâ€cells in vitro. Journal of Biochemical and Molecular Toxicology, 2022, , e23007.	1.4	0
2	Effects of lixisenatide treatment on mild cachexia and related metabolic abnormalities in Walkerâ€256 tumourâ€bearing rats. Cell Biochemistry and Function, 2021, 39, 335-343.	1.4	0
3	Early Cytokine-Induced Transient NOX2 Activity Is ER Stress-Dependent and Impacts β-Cell Function and Survival. Antioxidants, 2021, 10, 1305.	2.2	5
4	Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress. Cells, 2021, 10, 3328.	1.8	26
5	Evidence for NADPH oxidase activation by GPR40 in pancreatic β-cells. Redox Report, 2020, 25, 41-50.	1.4	5
6	Akt activation by insulin treatment attenuates cachexia in Walkerâ€256 tumorâ€bearing rats. Journal of Cellular Biochemistry, 2020, 121, 4558-4568.	1.2	4
7	Chronic activation of GPR40 does not negatively impact upon BRIN-BD11 pancreatic β-cell physiology and function. Pharmacological Reports, 2020, 72, 1725-1737.	1.5	6
8	Intermittent Fasting for Twelve Weeks Leads to Increases in Fat Mass and Hyperinsulinemia in Young Female Wistar Rats. Nutrients, 2020, 12, 1029.	1.7	16
9	The insulin resistance is reversed by exogenous 3,5,3′triiodothyronine in type 2 diabetic Goto–Kakizaki rats by an inflammatory-independent pathway. Endocrine, 2020, 68, 287-295.	1.1	4
10	Effects of metformin on insulin resistance and metabolic disorders in tumor-bearing rats with advanced cachexia. Canadian Journal of Physiology and Pharmacology, 2018, 96, 498-505.	0.7	7
11	Short-term high glucose culture potentiates pancreatic beta cell function. Scientific Reports, 2018, 8, 13061.	1.6	19
12	Chronic treatment with dexamethasone alters clock gene expression and melatonin synthesis in rat pineal gland at night. Nature and Science of Sleep, 2018, Volume 10, 203-215.	1.4	10
13	Insulin, not glutamine dipeptide, reduces lipases expression and prevents fat wasting and weight loss in Walker 256 tumor-bearing rats. European Journal of Pharmacology, 2017, 806, 67-74.	1.7	5
14	Pioglitazone improves insulin sensitivity and reduces weight loss in Walker-256 tumor-bearing rats. Life Sciences, 2017, 171, 68-74.	2.0	13
15	NADPH oxidase-2 does not contribute to β-cell glucotoxicity in cultured pancreatic islets from C57BL/6J mice. Molecular and Cellular Endocrinology, 2017, 439, 354-362.	1.6	24
16	Zinc Supplementation Improves Glucose Homeostasis in High Fat-Fed Mice by Enhancing Pancreatic β-Cell Function. Nutrients, 2017, 9, 1150.	1.7	34
17	L-Arginine supplementation improves insulin sensitivity and beta cell function in the offspring of diabetic rats through AKT and PDX-1 activation. European Journal of Pharmacology, 2016, 791, 780-787.	1.7	13
18	Omega-3 fatty acids control productions of superoxide and nitrogen oxide and insulin content in INS-1E cells. Journal of Physiology and Biochemistry, 2016, 72, 699-710.	1.3	14

#	Article	IF	CITATIONS
19	Melatonin modifies basal and stimulated insulin secretion via NADPH oxidase. Journal of Endocrinology, 2016, 231, 235-244.	1.2	16
20	Control of Insulin Secretion by Production of Reactive Oxygen Species: Study Performed in Pancreatic Islets from Fed and 48-Hour Fasted Wistar Rats. PLoS ONE, 2016, 11, e0158166.	1.1	36
21	Colonic Fermentation of Unavailable Carbohydrates from Unripe Banana and its Influence over Glycemic Control. Plant Foods for Human Nutrition, 2015, 70, 297-303.	1.4	15
22	Omega-3 Supplementation Improves Pancreatic Islet Redox Status. Pancreas, 2015, 44, 287-295.	0.5	18
23	Long-term disruption of maternal glucose homeostasis induced by prenatal glucocorticoid treatment correlates with miR-29 upregulation. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E109-E120.	1.8	25
24	DHEA supplementation in ovariectomized rats reduces impaired glucoseâ€stimulated insulin secretion induced by a highâ€fat diet. FEBS Open Bio, 2014, 4, 141-146.	1.0	20
25	PPARÎ ³ activation attenuates glucose intolerance induced by mTOR inhibition with rapamycin in rats. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1046-E1054.	1.8	40
26	Melatonin improves insulin sensitivity independently of weight loss in old obese rats. Journal of Pineal Research, 2013, 55, 156-165.	3.4	65
27	Fish oil supplementation for two generations increases insulin sensitivity in rats. Journal of Nutritional Biochemistry, 2013, 24, 1136-1145.	1.9	39
28	Cytotoxicity and cytoprotective effects of citrus flavonoids on insulin-secreting cells BRIN-BD11: beneficial synergic effects. Natural Product Research, 2013, 27, 925-928.	1.0	1
29	Dietâ€induced obesity impairs AKT signalling in the retina and causes retinal degeneration. Cell Biochemistry and Function, 2013, 31, 65-74.	1.4	24
30	Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion. Islets, 2013, 5, 139-148.	0.9	30
31	Dual effect of advanced glycation end products in pancreatic islet apoptosis. Diabetes/Metabolism Research and Reviews, 2013, 29, 296-307.	1.7	17
32	Changes in food intake, metabolic parameters and insulin resistance are induced by an isoenergetic, medium-chain fatty acid diet and are associated with modifications in insulin signalling in isolated rat pancreatic islets. British Journal of Nutrition, 2013, 109, 2154-2165.	1.2	15
33	Pancreatic islets isolated from β₂ adrenergic receptor knockout mice show reduced insulin secretion in response to nutrients - doi: 10.4025/actascibiolsci.v35i3.15842. Acta Scientiarum - Biological Sciences, 2013, 35, .	0.3	0
34	Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation. PLoS ONE, 2013, 8, e58626.	1.1	41
35	Maternal Moderate Physical Training during Pregnancy Attenuates the Effects of a Low-Protein Diet on the Impaired Secretion of Insulin in Rats: Potential Role for Compensation of Insulin Resistance and Preventing Gestational Diabetes Mellitus. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-7	3.0	12
36	Potential Contribution of Translational Factors to Triiodo- <scp>l</scp> -Thyronine-Induced Insulin Synthesis by Pancreatic Beta Cells. Thyroid, 2012, 22, 637-642.	2.4	5

#	Article	IF	CITATIONS
37	[11C]-MP4A PET Cholinergic Measurements in Amnestic Mild Cognitive Impairment, Probable Alzheimer's Disease, and Dementia with Lewy Bodies: A Bayesian Method and Voxel-Based Analysis. Journal of Alzheimer's Disease, 2012, 31, 387-399.	1.2	41
38	Metabolic Disorders and Adipose Tissue Insulin Responsiveness in Neonatally STZ-Induced Diabetic Rats Are Improved by Long-Term Melatonin Treatment. Endocrinology, 2012, 153, 2178-2188.	1.4	40
39	Reactive oxygen and nitrogen species generation, antioxidant defenses, and β-cell function: a critical role for amino acids. Journal of Endocrinology, 2012, 214, 11-20.	1.2	129
40	Expression of NADPH oxidase in human pancreatic islets. Life Sciences, 2012, 91, 244-249.	2.0	25
41	Angiotensin II-induced JNK activation is mediated by NAD(P)H oxidase in isolated rat pancreatic islets. Regulatory Peptides, 2012, 175, 1-6.	1.9	6
42	Alterations of NADPH Oxidase Activity in Rat Pancreatic Islets Induced by a High-Fat Diet. Pancreas, 2011, 40, 390-395.	0.5	14
43	Control of the Intracellular Redox State by Glucose Participates in the Insulin Secretion Mechanism. PLoS ONE, 2011, 6, e24507.	1.1	52
44	NAD(P)H oxidase participates in the palmitateâ€induced superoxide production and insulin secretion by rat pancreatic islets. Journal of Cellular Physiology, 2011, 226, 1110-1117.	2.0	37
45	Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets. Islets, 2011, 3, 213-223.	0.9	57
46	Oleic Acid Modulates Metabolic Substrate Channeling during Glucose-Stimulated Insulin Secretion via NAD(P)H Oxidase. Endocrinology, 2011, 152, 3614-3621.	1.4	21
47	Low doses of hydrogen peroxide impair glucose-stimulated insulin secretion via inhibition of glucose metabolism and intracellular calcium oscillations. Metabolism: Clinical and Experimental, 2010, 59, 409-413.	1.5	32
48	Association of NAD(P)H Oxidase with Glucose-Induced Insulin Secretion by Pancreatic β-Cells. Endocrinology, 2009, 150, 2197-2201.	1.4	115
49	Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell. Diabetologia, 2009, 52, 2489-2498.	2.9	140
50	Angiotensin II induces superoxide generation via NAD(P)H oxidase activation in isolated rat pancreatic islets. Regulatory Peptides, 2009, 153, 1-6.	1.9	13
51	Short-Term Modulation of Extracellular Signal-Regulated Kinase 1/2 and Stress-Activated Protein Kinase/c-Jun NH2-Terminal Kinase in Pancreatic Islets by Clucose and Palmitate. Pancreas, 2009, 38, 585-592.	0.5	7
52	Palmitate Activates Insulin Signaling Pathway in Pancreatic Rat Islets. Pancreas, 2009, 38, 578-584.	0.5	5
53	Activation of insulin and IGFâ€1 signaling pathways by melatonin through MT1 receptor in isolated rat pancreatic islets. Journal of Pineal Research, 2008, 44, 88-94.	3.4	79
54	Involvement of Phosphatidylinositol-3 Kinase/AKT/PKCζ/λ Pathway in the Effect of Palmitate on Glucose-Induced Insulin Secretion. Pancreas, 2008, 37, 309-315.	0.5	23

#	Article	IF	CITATIONS
55	Propionate inhibits glucose-induced insulin secretion in isolated rat pancreatic islets. Cell Biochemistry and Function, 2007, 25, 173-178.	1.4	43
56	Oleic, linoleic and \hat{I}^3 -linolenic acids increase ROS production by fibroblasts via NADPH oxidase activation. Chemistry and Physics of Lipids, 2007, 149, S62.	1.5	0
57	Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. Journal of Physiology, 2007, 583, 9-24.	1.3	530
58	Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia, 2007, 50, 359-369.	2.9	204
59	Dehydroepiandrosterone increases β-cell mass and improves the glucose-induced insulin secretion by pancreatic islets from aged rats. FEBS Letters, 2006, 580, 285-290.	1.3	28
60	ERK3 associates with MAP2 and is involved in glucose-induced insulin secretion. Molecular and Cellular Endocrinology, 2006, 251, 33-41.	1.6	21
61	New Insights into Fatty Acid Modulation of Pancreatic βâ€Cell Function. International Review of Cytology, 2006, 248, 1-41.	6.2	89
62	Perinatal Salt Restriction: A New Pathway to Programming Insulin Resistance and Dyslipidemia in Adult Wistar Rats. Pediatric Research, 2004, 56, 842-848.	1.1	32
63	Effect of long-term l-thyroxine treatment on bone mineral density in young adults with congenital hypothyroidism. European Journal of Endocrinology, 2004, 151, 689-694.	1.9	39
64	Changes of Fatty Acid Composition in Incubated Rat Pancreatic Islets. Diabetes and Metabolism, 2004, 30, 21-27.	1.4	29
65	Pleiotropic effects of fatty acids on pancreatic β-cells. Journal of Cellular Physiology, 2003, 194, 1-12.	2.0	140
66	Palmitate modulates the early steps of insulin signalling pathway in pancreatic islets. FEBS Letters, 2003, 544, 185-188.	1.3	23
67	Pancreatic Â-Cells Express Phagocyte-Like NAD(P)H Oxidase. Diabetes, 2003, 52, 1457-1463.	0.3	168
68	Opposite Effects of Glucose on Plasma Membrane Ca2+-ATPase and Na/Ca Exchanger Transcription, Expression, and Activity in Rat Pancreatic β-Cells. Journal of Biological Chemistry, 2003, 278, 22956-22963.	1.6	19
69	Melatonin inhibits insulin secretion and decreases PKA levels without interfering with glucose metabolism in rat pancreatic islets. Journal of Pineal Research, 2002, 33, 156-160.	3.4	98
70	Daily rhythm of glucose-induced insulin secretion by isolated islets from intact and pinealectomized rat. Journal of Pineal Research, 2002, 33, 172-177.	3.4	86
71	Macrophages transfer [14C]-labelled fatty acids to pancreatic islets in culture. Cell Biochemistry and Function, 2001, 19, 11-17.	1.4	12
72	Glucose induces an acute increase of superoxide dismutase activity in incubated rat pancreatic islets. American Journal of Physiology - Cell Physiology, 1999, 276, C507-C510.	2.1	37

#	Article	IF	CITATIONS
73	Modulation of insulin secretion by leptin. General Pharmacology, 1999, 32, 233-237.	0.7	25
74	Soybean- and olive-oils-enriched diets increase insulin secretion to glucose stimulus in isolated pancreatic rat islets. Physiology and Behavior, 1998, 65, 289-294.	1.0	25
75	Pivotal role of leptin in insulin effects. Brazilian Journal of Medical and Biological Research, 1998, 31, 715-722.	0.7	15
76	Impairment of insulin secretion in pancreatic islets isolated from Walker 256 tumor-bearing rats. American Journal of Physiology - Cell Physiology, 1996, 271, C804-C809.	2.1	26
77	Modulation of insulin secretion by feeding behavior and physical activity: Possible beneficial effects on obese and aged rats. Neuroscience and Biobehavioral Reviews, 1996, 20, 183-188.	2.9	3
78	Modulation of insulin secretion and 45Ca2+ efflux by dopamine in glucose-stimulated pancreatic islets. General Pharmacology, 1994, 25, 909-916.	0.7	11
79	Effect of Epinephrine on ⁸⁶ Rb Efflux, ⁴⁵ Ca Outflow and Insulin Release from Pancreatic Islets Perifused in the Presence of Propranolol. Hormone and Metabolic Research, 1993, 25, 138-141.	0.7	5
80	Paradoxical Inhibition of Insulin Release by D-Glucose in Islets Exposed to Dopamine. Hormone and Metabolic Research, 1992, 24, 452-453.	0.7	2
81	Stimulation of insulin release by vasopressin in the clonal β-cell line, HIT-T15: the role of protein kinase C. Journal of Molecular Endocrinology, 1992, 8, 145-153.	1.1	29
82	Obesity is the major cause of alterations in insulin secretion and calcium fluxes by isolated islets from aged rats. Physiology and Behavior, 1992, 52, 717-721.	1.0	10
83	Metabolic mechanisms involved in the impaired insulin secretion in pancreatic islets isolated from exercised and fasted rats. Physiology and Behavior, 1992, 52, 723-726.	1.0	3
84	Long-term regulation of pancreatic B-cell responsiveness to d-glucose by food availability, feeding schedule, and diet composition. Physiology and Behavior, 1992, 52, 1193-1196.	1.0	12
85	Utilization of rat and human sera to carry out incubation and perifusion of pancreatic islets. Journal of Pharmacological and Toxicological Methods, 1992, 28, 181-184.	0.3	2
86	Insulin secretion to glucose stimulus in pancreatic islets isolated from rats fed unbalanced diets. Physiology and Behavior, 1991, 50, 787-791.	1.0	13
87	Hexose metabolism in pancreatic islets: pyruvate carboxylase activity. Biochimie, 1991, 73, 583-586.	1.3	15
88	Insulin secretion in Walker 256 tumor cachexia. American Journal of Physiology - Endocrinology and Metabolism, 1990, 258, E1033-E1036.	1.8	32
89	Inhibition of Insulin Secretion by Rat Mesenteric Lymphocytes in Incubated Pancreatic Islet Cells. Hormone and Metabolic Research, 1990, 22, 356-357.	0.7	5
90	The effect of controlled feeding conditions on the metabolic characteristics of rats. Physiology and Behavior, 1989, 45, 529-532.	1.0	10

#	Article	IF	CITATIONS
91	Insulin secretion in the isolated islets of single-, regular-fasted and fed rats. Physiology and Behavior, 1989, 45, 923-927.	1.0	17
92	Fasting-induced dissociation of cationic and secretory events in pancreatic islets. Cell Biochemistry and Function, 1986, 4, 123-130.	1.4	11
93	The coupling of metabolic to secretory events in pancreatic islets. The possible role of glutathione reductase. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 844, 256-264.	1.9	16
94	Cholinergic stimulation of ion fluxes in pancreatic islets. Biochemical Pharmacology, 1985, 34, 3451-3457.	2.0	36
95	Stimulus-secretion coupling of amino acid-induced insulin release VII. The B-cell memory for L-glutamine. Metabolism: Clinical and Experimental, 1982, 31, 229-237.	1.5	8
96	Regulation of calcium fluxes in rat pancreatic islets. Biochimica Et Biophysica Acta - Biomembranes, 1981, 640, 16-30.	1.4	30
97	The stimulus-secretion coupling of glucose-induced insulin release: Enzymes of mannose metabolism in pancreatic islets. Archives of Biochemistry and Biophysics, 1981, 212, 54-62.	1.4	17
98	Stimulus-secretion coupling of glucose-induced insulin release. Timing of early metabolic, ionic, and secretory events. Metabolism: Clinical and Experimental, 1981, 30, 527-532.	1.5	22
99	Regulation of 86Rb outflow from pancreatic islets: the dual effect of nutrient secretagogues Journal of Physiology, 1981, 315, 143-156.	1.3	49
100	The stimulus-secretion coupling of amino acid-induced insulin release. Pflugers Archiv European Journal of Physiology, 1981, 391, 112-118.	1.3	13
101	Regulation of86Rb outflow from pancreatic islets. Acta Diabetologica Latina, 1980, 17, 199-205.	0.2	11
102	Tolbutamide stimulates Ca2+ influx in islet cells without reducing k+ conductance. Diabetologia, 1980, 19, 85-85.	2.9	12
103	The stimulus-secretion coupling of glucose-induced insulin release. Diabetologia, 1980, 19, 458-464.	2.9	32
104	Stimulus-secretion coupling of glucose-induced insulin release. Effect of intracellular acidification upon calcium efflux from islet cells. Metabolism: Clinical and Experimental, 1980, 29, 540-545.	1.5	92
105	The stimulus-secretion coupling of glucose-induced insulin release XLVI. Physiological role of I-glutamine as a fuel for pancreatic islets. Molecular and Cellular Endocrinology, 1980, 20, 171-189.	1.6	119
106	Regulation of 86Rb+ outflow from pancreatic islets I. Reciprocal changes in the response to glucose, tetraethylammonium and quinine. Molecular and Cellular Endocrinology, 1980, 17, 103-110.	1.6	61
107	Regulation of 86Rb+ outflow from pancreatic islets III. Possible significance of ATP. Journal of Endocrinological Investigation, 1980, 3, 365-370.	1.8	10
108	The stimulus-secretion coupling of amino acid-induced insulin release: metabolism and cationic effects of leucine. Diabetes, 1980, 29, 431-437.	0.3	28