Samuel Alizon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2768252/publications.pdf

Version: 2024-02-01

147801 114465 4,858 92 31 63 h-index citations g-index papers 137 137 137 5365 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Virulence evolution and the tradeâ€off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology, 2009, 22, 245-259.	1.7	715
2	Multiple infections and the evolution of virulence. Ecology Letters, 2013, 16, 556-567.	6.4	348
3	Inclusive fitness theory and eusociality. Nature, 2011, 471, E1-E4.	27.8	339
4	Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends in Ecology and Evolution, 2008, 23, 511-517.	8.7	303
5	Virulence and Pathogenesis of HIV-1 Infection: An Evolutionary Perspective. Science, 2014, 343, 1243727.	12.6	215
6	Emergence of a Convex Tradeâ€Off between Transmission and Virulence. American Naturalist, 2005, 165, E155-E167.	2.1	140
7	Multiple Infections, Immune Dynamics, and the Evolution of Virulence. American Naturalist, 2008, 172, E150-E168.	2.1	135
8	The virulence–transmission trade-off in vector-borne plant viruses: a review of (non-)existing studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1907-1918.	4.0	117
9	Within-host and between-host evolutionary rates across the HIV-1 genome. Retrovirology, 2013, 10, 49.	2.0	110
10	Adaptive virulence evolution: the good old fitness-based approach. Trends in Ecology and Evolution, 2015, 30, 248-254.	8.7	110
11	Phylogenetic Approach Reveals That Virus Genotype Largely Determines HIV Set-Point Viral Load. PLoS Pathogens, 2010, 6, e1001123.	4.7	108
12	What is a pathogen? Toward a process view of host-parasite interactions. Virulence, 2014, 5, 775-785.	4.4	108
13	EMPTY SITES CAN PROMOTE ALTRUISTIC BEHAVIOR. Evolution; International Journal of Organic Evolution, 2008, 62, 1335-1344.	2.3	104
14	Epidemiological and clinical consequences of within-host evolution. Trends in Microbiology, 2011, 19, 24-32.	7.7	91
15	Rapid spread of the SARS-CoV-2 Delta variant in some French regions, June 2021. Eurosurveillance, 2021, 26, .	7.0	83
16	Co-infection and super-infection models in evolutionary epidemiology. Interface Focus, 2013, 3, 20130031.	3.0	76
17	Introducing the Outbreak Threshold in Epidemiology. PLoS Pathogens, 2013, 9, e1003277.	4.7	63
18	Predation and Disturbance Interact to Shape Prey Species Diversity. American Naturalist, 2007, 170, 143-154.	2.1	59

#	Article	IF	Citations
19	Within-host parasite cooperation and the evolution of virulence. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3738-3747.	2.6	56
20	BRIDGING SCALES IN THE EVOLUTION OF INFECTIOUS DISEASE LIFE HISTORIES: THEORY. Evolution; International Journal of Organic Evolution, 2011, 65, 3448-3461.	2.3	55
21	Transmissionâ€Recovery Tradeâ€Offs to Study Parasite Evolution. American Naturalist, 2008, 172, E113-E121.	2.1	53
22	Acute or Chronic? Withinâ€Host Models with Immune Dynamics, Infection Outcome, and Parasite Evolution. American Naturalist, 2008, 172, E244-E256.	2.1	51
23	Epidemic Spread on Weighted Networks. PLoS Computational Biology, 2013, 9, e1003352.	3.2	51
24	COUSIN (COdon Usage Similarity INdex): A Normalized Measure of Codon Usage Preferences. Genome Biology and Evolution, 2019, 11, 3523-3528.	2.5	51
25	Modelling the Course of an HIV Infection: Insights from Ecology and Evolution. Viruses, 2012, 4, 1984-2013.	3.3	50
26	Why Human Papillomavirus Acute Infections Matter. Viruses, 2017, 9, 293.	3.3	49
27	The Evolutionary Dynamics of a Rapidly Mutating Virus within and between Hosts: The Case of Hepatitis C Virus. PLoS Computational Biology, 2009, 5, e1000565.	3.2	43
28	Memory is key in capturing COVID-19 epidemiological dynamics. Epidemics, 2021, 35, 100459.	3.0	43
29	PARASITE CO-TRANSMISSION AND THE EVOLUTIONARY EPIDEMIOLOGY OF VIRULENCE. Evolution; International Journal of Organic Evolution, 2013, 67, 921-933.	2.3	40
30	Competition between cryptic species explains variations in rates of lineage evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12382-12386.	7.1	39
31	Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study. PLoS Computational Biology, 2017, 13, e1005416.	3.2	39
32	Virulence evolution in response to anti-infection resistance: toxic food plants can select for virulent parasites of monarch butterflies. Journal of Evolutionary Biology, 2011, 24, 712-722.	1.7	38
33	Age-structured non-pharmaceutical interventions for optimal control of COVID-19 epidemic. PLoS Computational Biology, 2021, 17, e1008776.	3.2	38
34	Parasite evolution in response to sexâ€based host heterogeneity in resistance and tolerance. Journal of Evolutionary Biology, 2014, 27, 2753-2766.	1.7	37
35	Exposing the diversity of multiple infection patterns. Journal of Theoretical Biology, 2017, 419, 278-289.	1.7	36
36	Transmission–virulence trade-offs in vector-borne diseases. Theoretical Population Biology, 2008, 74, 6-15.	1,1	35

#	Article	IF	Citations
37	From within-host interactions to epidemiological competition: a general model for multiple infections. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140303.	4.0	34
38	Inexpensive Research in the Golden Open-Access Era. Trends in Ecology and Evolution, 2018, 33, 301-303.	8.7	32
39	Detecting Rapid Spread of SARS-CoV-2 Variants, France, January 26–February 16, 2021. Emerging Infectious Diseases, 2021, 27, 1496-1499.	4.3	32
40	Decreased Overall Virulence in Coinfected Hosts Leads to the Persistence of Virulent Parasites. American Naturalist, 2008, 172, E67-E79.	2.1	30
41	SARSâ€CoVâ€2 virulence evolution: Avirulence theory, immunity and tradeâ€offs. Journal of Evolutionary Biology, 2021, 34, 1867-1877.	1.7	29
42	The Price equation framework to study disease withinâ€host evolution. Journal of Evolutionary Biology, 2009, 22, 1123-1132.	1.7	26
43	SARS-CoV-2 viral RNA levels are not 'viral load'. Trends in Microbiology, 2021, 29, 970-972.	7.7	26
44	Quantifying the epidemic spread of Ebola virus (EBOV) in Sierra Leone using phylodynamics. Virulence, 2014, 5, 825-827.	4.4	25
45	The SARS-CoV-2 B.1.351 lineage (VOC \hat{l}^2) is outgrowing the B.1.1.7 lineage (VOC \hat{l}^\pm) in some French regions in April 2021. Eurosurveillance, 2021, 26, .	7.0	24
46	Epidemiological Feedbacks Affect Evolutionary Emergence of Pathogens. American Naturalist, 2014, 183, E105-E117.	2.1	22
47	How effectively can HIV phylogenies be used to measure heritability?. Evolution, Medicine and Public Health, 2013, 2013, 209-224.	2.5	21
48	Coevolution of virulence and immunosuppression in multiple infections. Journal of Evolutionary Biology, 2018, 31, 995-1005.	1.7	19
49	Invasions of Host-Associated Microbiome Networks. Advances in Ecological Research, 2017, , 201-281.	2.7	19
50	Analyzing and Modeling the Spread of SARS-CoV-2 Omicron Lineages BA.1 and BA.2, France, September 2021–February 2022. Emerging Infectious Diseases, 2022, 28, 1355-1365.	4.3	18
51	Natural history, dynamics, and ecology of human papillomaviruses in genital infections of young women: protocol of the PAPCLEAR cohort study. BMJ Open, 2019, 9, e025129.	1.9	17
52	Reconciling Pasteur and Darwin to control infectious diseases. PLoS Biology, 2018, 16, e2003815.	5.6	15
53	Epithelial stratification shapes infection dynamics. PLoS Computational Biology, 2019, 15, e1006646.	3.2	13
54	SARS-CoV-2 variants of concern are associated with lower RT-PCR amplification cycles between January and March 2021 in France. International Journal of Infectious Diseases, 2021, 113, 12-14.	3.3	13

#	Article	IF	CITATIONS
55	Why is HIV not vectorâ€borne?. Evolutionary Applications, 2008, 1, 17-27.	3.1	11
56	Weighting for sex acts to understand the spread of STI on networks. Journal of Theoretical Biology, 2012, 311, 46-53.	1.7	11
57	Variantâ€specific SARSâ€CoVâ€2 withinâ€host kinetics. Journal of Medical Virology, 2022, 94, 3625-3633.	5.0	11
58	Clinical applications of pathogen phylogenies. Trends in Molecular Medicine, 2014, 20, 394-404.	6.7	10
59	Within-Host Stochastic Emergence Dynamics of Immune-Escape Mutants. PLoS Computational Biology, 2015, 11, e1004149.	3.2	10
60	Anticipating COVID-19 intensive care unit capacity strain: A look back at epidemiological projections in France. Anaesthesia, Critical Care & Description Medicine, 2021, 40, 100943.	1.4	10
61	Withinâ€host viral evolution in a heterogeneous environment: insights into the HIV coâ€receptor switch. Journal of Evolutionary Biology, 2010, 23, 2625-2635.	1.7	9
62	Detecting within-host interactions from genotype combination prevalence data. Epidemics, 2019, 29, 100349.	3.0	9
63	HPV cervical infections and serological status in vaccinated and unvaccinated women. Vaccine, 2020, 38, 8167-8174.	3.8	9
64	Superspreading genomes. Science, 2021, 371, 574-575.	12.6	9
65	Predicting COVID-19 incidence in French hospitals using human contact network analytics. International Journal of Infectious Diseases, 2021, 111, 100-107.	3.3	9
66	Non-Markovian modelling highlights the importance of age structure on Covid-19 epidemiological dynamics. Mathematical Modelling of Natural Phenomena, 2022, 17, 7.	2.4	9
67	Can Ebola virus evolve to be less virulent in humans?. Journal of Evolutionary Biology, 2018, 31, 382-392.	1.7	8
68	THE TRANSMISSION-VIRULENCE TRADE-OFF AND SUPERINFECTION: COMMENTS TO SMITH. Evolution; International Journal of Organic Evolution, 2011, 65, 3633-3638.	2.3	7
69	Emerging Disease and the Evolution of Virulence: The Case of the 1918–1919 Influenza Pandemic. History, Philosophy and Theory of the Life Sciences, 2015, , 93-130.	0.4	7
70	Emerging dynamics from high-resolution spatial numerical epidemics. ELife, 2021, 10, .	6.0	7
71	Two waves and a high tide: the COVID-19 epidemic in France. Anaesthesia, Critical Care & Eamp; Pain Medicine, 2021, 40, 100881.	1.4	6
72	Quantifying transmission dynamics of acute hepatitis C virus infections in a heterogeneous population using sequence data. PLoS Pathogens, 2021, 17, e1009916.	4.7	6

#	Article	IF	CITATIONS
73	Epidemiological and clinical insights from SARS-CoV-2 RT-PCR crossing threshold values, France, January to November 2020. Eurosurveillance, 2022, 27, .	7.0	6
74	Towards a multi-level and a multi-disciplinary approach to DNA oncovirus virulence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190041.	4.0	5
75	Cytokine response following perturbation of the cervicovaginal milieu during HPV genital infection. Immunologic Research, 2021, 69, 255-263.	2.9	5
76	Challenges for mathematical epidemiological modelling. Anaesthesia, Critical Care & Damp; Pain Medicine, 2022, 41, 101053.	1.4	5
77	Evidence that hepatitis C virus genome partly controls infection outcome. Evolutionary Applications, 2014, 7, 533-547.	3.1	4
78	Within-host bacterial growth dynamics with both mutation and horizontal gene transfer. Journal of Mathematical Biology, 2021, 82, 16.	1.9	4
79	Early phylodynamics analysis of the COVID-19 epidemic in France. , 0, 1 , .		4
80	Estimating dates of origin and end of COVID-19 epidemics. , $0, 1, .$		4
81	On the limits of interpreting some plastic responses through a cooperator/cheater prism. A comment on Harrison. Journal of Evolutionary Biology, 2013, 26, 2051-2056.	1.7	3
82	Treating symptomatic infections and the co-evolution of virulence and drug resistance. , 0, 1 , .		3
83	The source of individual heterogeneity shapes infectious disease outbreaks. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220232.	2.6	3
84	A Visionary Pioneer of Parasite Ecology and Evolution. American Naturalist, 2016, 187, ii-iii.	2.1	2
85	Analysing different exposures identifies that wearing masks and establishing COVID-19 areas reduce secondary-attack risk in aged-care facilities. International Journal of Epidemiology, 2022, 50, 1788-1794.	1.9	2
86	Episome partitioning and symmetric cell divisions: Quantifying the role of random events in the persistence of HPV infections. PLoS Computational Biology, 2021, 17, e1009352.	3.2	2
87	Modelling the evolution of viral oncogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180302.	4.0	1
88	Reconstructing contact network structure and cross-immunity patterns from multiple infection histories. PLoS Computational Biology, 2021, 17, e1009375.	3.2	1
89	Phylodynamique des infections virales. Virologie, 2017, 21, 119-129.	0.1	1
90	Modelling the evolution of how vector-borne parasites manipulate the vector's host choice. Peer Community in Evolutionary Biology, 2018, , 100023.	0.0	0

ARTICLE IF CITATIONS

91 "Avec le Covid-19, la modélisation des épidémies s'ouvre aux données massives― Pourlascience Fr.2021, 0

92 Can we eradicate viral pathogens?. Journal of Evolutionary Biology, 2021, 34, 1851-1854. 1.7 0