Salvatore Surdo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2768054/publications.pdf Version: 2024-02-01

SALVATORE SURDO

#	Article	IF	CITATIONS
1	Environmentally Benign Production of Stretchable and Robust Superhydrophobic Silicone Monoliths. ACS Applied Materials & Interfaces, 2018, 10, 2907-2917.	8.0	107
2	Electrochemical Micromachining as an Enabling Technology for Advanced Silicon Microstructuring. Advanced Functional Materials, 2012, 22, 1222-1228.	14.9	82
3	Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis. Lab on A Chip, 2012, 12, 4403.	6.0	61
4	Singleâ€Shot Laser Additive Manufacturing of High Fillâ€Factor Microlens Arrays. Advanced Optical Materials, 2018, 6, 1701190.	7.3	50
5	Ordered Silicon Pillar Arrays Prepared by Electrochemical Micromachining: Substrates for High-Efficiency Cell Transfection. ACS Applied Materials & Interfaces, 2016, 8, 29197-29202.	8.0	45
6	Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals. Microfluidics and Nanofluidics, 2012, 12, 545-552.	2.2	35
7	Microlens fabrication by replica molding of frozen laser-printed droplets. Applied Surface Science, 2017, 418, 554-558.	6.1	34
8	Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications. RSC Advances, 2014, 4, 51935-51941.	3.6	33
9	Impact of Fabrication and Bioassay Surface Roughness on the Performance of Label-Free Resonant Biosensors Based On One-Dimensional Photonic Crystal Microcavities. ACS Sensors, 2020, 5, 2894-2902.	7.8	27
10	Nanopatterning with Photonic Nanojets: Review and Perspectives in Biomedical Research. Micromachines, 2021, 12, 256.	2.9	25
11	The revolution of PDMS microfluidics in cellular biology. Critical Reviews in Biotechnology, 2023, 43, 465-483.	9.0	24
12	On the performance of label-free biosensors based on vertical one-dimensional photonic crystal resonant cavities. Optics Express, 2015, 23, 9192.	3.4	23
13	Near-Infrared Silicon Photonic Crystals with High-Order Photonic Bandgaps for High-Sensitivity Chemical Analysis of Water–Ethanol Mixtures. ACS Sensors, 2018, 3, 2223-2231.	7.8	23
14	Acousto-optic systems for advanced microscopy. JPhys Photonics, 2021, 3, 012004.	4.6	20
15	Highly conformal growth of microstructured polypyrrole films by electrosynthesis on micromachined silicon substrates. Electrochemistry Communications, 2012, 14, 1-4.	4.7	18
16	An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals. Applied Physics Letters, 2013, 103, .	3.3	18
17	Micromixing with spark-generated cavitation bubbles. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	17
18	Silicon Micromachined Device Testing by Infrared Low-Coherence Reflectometry. Journal of Microelectromechanical Systems, 2015, 24, 1960-1964.	2.5	16

SALVATORE SURDO

#	Article	IF	CITATIONS
19	Twoâ€Dimensional Array of Photoluminescent Light Sources by Selective Integration of Conjugated Luminescent Polymers into Threeâ€Dimensional Silicon Microstructures. Advanced Optical Materials, 2013, 1, 894-898.	7.3	14
20	3D Silicon Microstructures: A New Tool for Evaluating Biological Aggressiveness of Tumor Cells. IEEE Transactions on Nanobioscience, 2015, 14, 797-805.	3.3	13
21	Towards nanopatterning by femtosecond laser ablation of pre-stretched elastomers. Applied Surface Science, 2016, 374, 151-156.	6.1	13
22	Leaf-Inspired Authentically Complex Microvascular Networks for Deciphering Biological Transport Process. ACS Applied Materials & Interfaces, 2019, 11, 31627-31637.	8.0	13
23	Optical Quality-Assessment of High-Order One-Dimensional Silicon Photonic Crystals With a Reflectivity Notch at \$lambda sim 1.55 muhbox{m}\$. IEEE Photonics Journal, 2010, 2, 981-990.	2.0	12
24	Fast Acoustic Light Sculpting for Onâ€Demand Maskless Lithography. Advanced Science, 2019, 6, 1900304.	11.2	12
25	A New Cell-Selective Three-Dimensional Microincubator Based on Silicon Photonic Crystals. PLoS ONE, 2012, 7, e48556.	2.5	10
26	Geometry-controllable micro-optics with laser catapulting. Optical Materials Express, 2019, 9, 2892.	3.0	10
27	Label-free optical detection of cells grown in 3D silicon microstructures. Lab on A Chip, 2013, 13, 3284.	6.0	9
28	Dynamic Multifocus Laser Writing with Acoustoâ€Optofluidics. Advanced Materials Technologies, 2019, 4, 1900623.	5.8	9
29	Investigation of Cell Culturing on High-Aspect-Ratio, Three-Dimensional Silicon Microstructures. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1215-1222.	2.9	8
30	Fibrillogenesis of human <i>β</i> ₂ â€microglobulin in threeâ€dimensional silicon microstructures. Journal of Biophotonics, 2012, 5, 785-792.	2.3	8
31	Printability conditions for an all-solid-state laser transfer. Applied Surface Science, 2020, 506, 144969.	6.1	7
32	High-aspect-ratio conducting polymer microtube synthesis by light-activated electropolymerization on microstructured silicon. Electrochemistry Communications, 2013, 35, 12-16.	4.7	6
33	3D-Printed, Pocket-Size Diffusion Cells for Skin Permeation Investigation. Proceedings (mdpi), 2018, 2, .	0.2	5
34	C-Si hybrid photonic structures by full infiltration of conjugated polymers into porous silicon rugate filters. Nanomaterials and Nanotechnology, 2018, 8, 184798041878840.	3.0	4
35	Hybrid-Organic Photonic Structures for Light Emission Modification. , 2015, , 339-358.		4
36	An Innovative Cell Microincubator for Drug Discovery Based on 3D Silicon Structures. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	2

SALVATORE SURDO

#	Article	IF	CITATIONS
37	Cavitation-Assisted Micromixing for Polymeric Nanoparticle Generation. Proceedings (mdpi), 2018, 2, .	0.2	2
38	Silicon micromachined photonic crystal integrated in an opto-fluidic microsystem. , 2011, , .		1
39	3-D Solar Cells Based on Radial Silicon Heterojunctions Exploiting Microhole Lattices. IEEE Photonics Technology Letters, 2013, 25, 1908-1911.	2.5	1
40	Microstructuring conducting polymers and molecularly imprinted polymers by light-activated electropolymerization on micromachined silicon. Applications in electrochemical sensing. , 2013, , .		1
41	Acoustically shaped laser light as an enabling technology for Industry 4.0. , 2019, , .		1
42	A new approach for CMOS-compatible fabrication of cantilever/tip systems for probe-storage applications. , 2009, , .		0
43	Fluorescence detection of fibrillar proteins on silicon microstructures. , 2011, , .		Ο
44	Technology, characterization and preliminary sensing application of photoelectrosynthesized polypyrrole on microstructured silicon. , 2011, , .		0
45	Reconstruction of cell distribution in 3D silicon microstructures by label-free optical detection. , 2014, , .		Ο
46	Capillary optofluidics by high-aspect-ratio photonic crystals. , 2014, , .		0
47	On-The-Fly Laser Beam Shaping With Acousto-Optofluidics. , 2021, , .		О
48	Direct Writing of 100% Fill-Factor Geometry-Controllable Microlens Arrays with Laser Catapulting. , 2021, , .		0
49	Design, implementation, and characterization of a fast acousto-optofluidic multi-focal laser system. , 2019, , .		0
50	Acoustically-shaped laser: a machining tool for Industry 4.0. Acta IMEKO (2012), 2020, 9, 60.	0.7	0