
## Wouter Huberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2768030/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Complementing sparse vascular imaging data by physiological adaptation rules. Journal of Applied Physiology, 2021, 130, 571-588.                                                                                                                               | 1.2 | 0         |
| 2  | Haemodynamic optimisation of a dialysis graft design using a global optimisation approach.<br>International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3423.                                                                          | 1.0 | 4         |
| 3  | An Automated Algorithm for Optic Nerve Sheath Diameter Assessment from Bâ€mode Ultrasound Images.<br>Journal of Neuroimaging, 2021, 31, 724-732.                                                                                                               | 1.0 | 6         |
| 4  | Computationally guided in-vitro vascular growth model reveals causal link between flow oscillations and disorganized neotissue. Communications Biology, 2021, 4, 546.                                                                                          | 2.0 | 2         |
| 5  | Intra-Operative Video-Based Measurement of Biaxial Strains of the Ascending Thoracic Aorta.<br>Biomedicines, 2021, 9, 670.                                                                                                                                     | 1.4 | 7         |
| 6  | Optic nerve sheath diameter assessment by neurosonology: A review of methodologic discrepancies.<br>Journal of Neuroimaging, 2021, 31, 814-825.                                                                                                                | 1.0 | 29        |
| 7  | The impact of shape uncertainty on aorticâ€valve pressureâ€drop computations. International Journal for<br>Numerical Methods in Biomedical Engineering, 2021, 37, e3518.                                                                                       | 1.0 | 7         |
| 8  | Uncertainty Quantification of Regional Cardiac Tissue Properties in Arrhythmogenic Cardiomyopathy<br>Using Adaptive Multiple Importance Sampling. Frontiers in Physiology, 2021, 12, 738926.                                                                   | 1.3 | 7         |
| 9  | Improved Quantification of Cell Density in the Arterial Wall—A Novel Nucleus Splitting Approach<br>Applied to 3D Two-Photon Laser-Scanning Microscopy. Frontiers in Physiology, 2021, 12, 814434.                                                              | 1.3 | 0         |
| 10 | The Role of One-Dimensional Model-Generated Inter-Subject Variations in Systemic Properties on Wall<br>Shear Stress Indices of Intracranial Aneurysms. IEEE Transactions on Biomedical Engineering, 2020, 67,<br>1030-1039.                                    | 2.5 | 0         |
| 11 | Computational study on the haemodynamic and mechanical performance of electrospun polyurethane dialysis grafts. Biomechanics and Modeling in Mechanobiology, 2020, 19, 713-722.                                                                                | 1.4 | 9         |
| 12 | Computational Modelling Based Recommendation on Optimal Dialysis Needle Positioning and Dialysis<br>Flow in Patients With Arteriovenous Grafts. European Journal of Vascular and Endovascular Surgery,<br>2020, 59, 288-294.                                   | 0.8 | 5         |
| 13 | Natural Vascular Remodelling After Arteriovenous Fistula Creation in Dialysis Patients With and<br>Without Previous Ipsilateral Vascular Access. European Journal of Vascular and Endovascular<br>Surgery, 2020, 59, 277-287.                                  | 0.8 | 12        |
| 14 | Uncertainty in modelâ€based treatment decision support: Applied to aortic valve stenosis. International<br>Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3388.                                                                           | 1.0 | 6         |
| 15 | Pre-operative Patient Specific Flow Predictions to Improve Haemodialysis Arteriovenous Fistula<br>Maturation (Shunt Simulation Study): A Randomised Controlled Trial. European Journal of Vascular<br>and Endovascular Surgery, 2020, 60, 98-106.              | 0.8 | 10        |
| 16 | Parameter subset reduction for patient-specific modelling of arrhythmogenic cardiomyopathy-related<br>mutation carriers in the CircAdapt model. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2020, 378, 20190347. | 1.6 | 10        |
| 17 | A Metamodeling Approach for Instant Severity Assessment and Uncertainty Quantification of Iliac<br>Artery Stenoses. Journal of Biomechanical Engineering, 2020, 142, .                                                                                         | 0.6 | 1         |
| 18 | Large vessels as a tree of transmission lines incorporated in the CircAdapt whole-heart model: A computational tool to examine heart-vessel interaction. PLoS Computational Biology, 2019, 15, e1007173.                                                       | 1.5 | 11        |

WOUTER HUBERTS

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cardiovascular models for personalised medicine: Where now and where next?. Medical Engineering and Physics, 2019, 72, 38-48.                                                                                                                | 0.8 | 42        |
| 20 | A geometry-based model for non-invasive estimation of pressure gradients over iliac artery stenoses.<br>Journal of Biomechanics, 2019, 92, 67-75.                                                                                            | 0.9 | 4         |
| 21 | Augmentation index is not a proxy for wave reflection magnitude: mechanistic analysis using a computational model. Journal of Applied Physiology, 2019, 127, 491-500.                                                                        | 1.2 | 36        |
| 22 | A comparative study of geometry-based methods and intra-arterial pressure measurements to assess the hemodynamic significance of equivocal iliac artery stenoses. Vascular, 2019, 27, 119-127.                                               | 0.4 | 1         |
| 23 | Intima heterogeneity in stress assessment of atherosclerotic plaques. Interface Focus, 2018, 8, 20170008.                                                                                                                                    | 1.5 | 16        |
| 24 | Modeling regulation of vascular tone following muscle contraction: Model development, validation and global sensitivity analysis. Journal of Computational Science, 2018, 24, 143-159.                                                       | 1.5 | 4         |
| 25 | Uncertainty quantification and sensitivity analysis of an arterial wall mechanics model for<br>evaluation of vascular drug therapies. Biomechanics and Modeling in Mechanobiology, 2018, 17, 55-69.                                          | 1.4 | 13        |
| 26 | What is needed to make cardiovascular models suitable for clinical decision support? A viewpoint paper. Journal of Computational Science, 2018, 24, 68-84.                                                                                   | 1.5 | 39        |
| 27 | Zeroâ€dimensional lumped approach to incorporate the dynamic part of the pressure at vessel junctions<br>in a 1D wave propagation model. International Journal for Numerical Methods in Biomedical<br>Engineering, 2018, 34, e3116.          | 1.0 | 1         |
| 28 | Pre-operative Duplex Ultrasonography in Arteriovenous Fistula Creation: Intra- and Inter-observer<br>Agreement. European Journal of Vascular and Endovascular Surgery, 2017, 54, 613-619.                                                    | 0.8 | 10        |
| 29 | In Vivo Validation of Patient‧pecific Pressure Gradient Calculations for Iliac Artery Stenosis Severity<br>Assessment. Journal of the American Heart Association, 2017, 6, .                                                                 | 1.6 | 7         |
| 30 | Hemodynamic significance assessment of equivocal iliac artery stenoses by comparing duplex<br>ultrasonography with intra-arterial pressure measurements. Journal of Cardiovascular Surgery, 2017,<br>59, 37-44.                              | 0.3 | 3         |
| 31 | Preoperative computer simulation for planning of vascular access surgery in hemodialysis patients.<br>Journal of Vascular Access, 2017, 18, S118-S124.                                                                                       | 0.5 | 11        |
| 32 | A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications.<br>International Journal for Numerical Methods in Biomedical Engineering, 2016, 32, e02755.                                                  | 1.0 | 105       |
| 33 | Application of an Adaptive Polynomial Chaos Expansion on Computationally Expensive<br>Three-Dimensional Cardiovascular Models for Uncertainty Quantification and Sensitivity Analysis.<br>Journal of Biomechanical Engineering, 2016, 138, . | 0.6 | 26        |
| 34 | Global sensitivity analysis of a model for venous valve dynamics. Journal of Biomechanics, 2016, 49,<br>2845-2853.                                                                                                                           | 0.9 | 5         |
| 35 | A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function. International<br>Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02716.                                                              | 1.0 | 21        |
| 36 | Personalization of models with many model parameters: an efficient sensitivity analysis approach.<br>International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, .                                                      | 1.0 | 25        |

WOUTER HUBERTS

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A benchmark study of numerical schemes for oneâ€dimensional arterial blood flow modelling.<br>International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02732.                                          | 1.0 | 144       |
| 38 | Applicability of the polynomial chaos expansion method for personalization of a cardiovascular pulse wave propagation model. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 1679-1704.        | 1.0 | 29        |
| 39 | Assisting vascular access surgery planning for hemodialysis by using MR, image segmentation<br>techniques, and computer simulations. Medical and Biological Engineering and Computing, 2013, 51,<br>879-889.                    | 1.6 | 12        |
| 40 | A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula<br>surgery. Part B: Identification of possible generic model parameters. Medical Engineering and Physics,<br>2013, 35, 827-837. | 0.8 | 14        |
| 41 | A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula<br>surgery. Part A: Identification of most influential model parameters. Medical Engineering and Physics,<br>2013, 35, 810-826. | 0.8 | 27        |
| 42 | A Numerical Method of Reduced Complexity for Simulating Vascular Hemodynamics Using Coupled 0D<br>Lumped and 1D Wave Propagation Models. Computational and Mathematical Methods in Medicine, 2012,<br>2012, 1-10.               | 0.7 | 33        |
| 43 | Computational model for estimating the short- and long-term cardiac response to arteriovenous<br>fistula creation for hemodialysis. Medical and Biological Engineering and Computing, 2012, 50,<br>1289-1298.                   | 1.6 | 7         |
| 44 | Patient-Specific Computational Modeling of Upper Extremity Arteriovenous Fistula Creation: Its<br>Feasibility to Support Clinical Decision-Making. PLoS ONE, 2012, 7, e34491.                                                   | 1.1 | 27        |
| 45 | Experimental validation of a pulse wave propagation model for predicting hemodynamics after vascular access surgery. Journal of Biomechanics, 2012, 45, 1684-1691.                                                              | 0.9 | 31        |
| 46 | A pulse wave propagation model to support decision-making in vascular access planning in the clinic.<br>Medical Engineering and Physics, 2012, 34, 233-248.                                                                     | 0.8 | 77        |
| 47 | Clinical Study Protocol for the ARCH Project Computational Modeling for Improvement of Outcome after Vascular Access Creation. Journal of Vascular Access, 2011, 12, 369-376.                                                   | 0.5 | 23        |
| 48 | A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences and Engineering, 2009, 6, 27-40.                                                | 1.0 | 23        |