Sarah Pringle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2767897/publications.pdf Version: 2024-02-01

SADAH DDINCLE

#	Article	IF	CITATIONS
1	Role of interaction between B cells and epithelial cells in pSS. Annals of the Rheumatic Diseases, 2022, 81, e260-e260.	0.9	1
2	Senescent Progenitor Cells in the Skin of Patients with Cutaneous Lupus Erythematosus. Journal of Investigative Dermatology, 2022, 142, 976-980.e2.	0.7	2
3	Mouse parotid salivary gland organoids for the in vitro study of stem cell radiation response. Oral Diseases, 2021, 27, 52-63.	3.0	21
4	Epithelial–immune cell interplay in primary Sjögren syndrome salivary gland pathogenesis. Nature Reviews Rheumatology, 2021, 17, 333-348.	8.0	101
5	A Distinct Macrophage Subset Mediating Tissue Destruction and Neovascularization in Giant Cell Arteritis: Implication of the YKLâ€40/Interleukinâ€13 Receptor α2 Axis. Arthritis and Rheumatology, 2021, 73, 2327-2337.	5.6	27
6	The Transcriptome of Paired Major and Minor Salivary Gland Tissue in Patients With Primary Sjögren's Syndrome. Frontiers in Immunology, 2021, 12, 681941.	4.8	26
7	β-Adrenergic signaling induces Notch-mediated salivary gland progenitor cell control. Stem Cell Reports, 2021, 16, 2813-2824.	4.8	3
8	Senescent Stem and Transient Amplifying Cells in Crohn's Disease Intestine. Inflammatory Bowel Diseases, 2020, 26, e8-e9.	1.9	14
9	Progenitor cell niche senescence reflects pathology of the parotid salivary gland in primary SjŶgren's syndrome. Rheumatology, 2020, 59, 3003-3013.	1.9	23
10	Gene expression profiling of epithelium-associated FcRL4+ B cells in primary Sjögren's syndrome reveals a pathogenic signature. Journal of Autoimmunity, 2020, 109, 102439.	6.5	35
11	Abatacept treatment for patients with early active primary Sjögren's syndrome: a single-centre, randomised, double-blind, placebo-controlled, phase 3 trial (ASAP-III study). Lancet Rheumatology, The, 2020, 2, e153-e163.	3.9	51
12	Lack of Conventional Acinar Cells in Parotid Salivary Gland of Patient Taking an Anti-PD-L1 Immune Checkpoint Inhibitor. Frontiers in Oncology, 2020, 10, 420.	2.8	10
13	Checkpoint inhibition-induced sicca: a type II interferonopathy?. Clinical and Experimental Rheumatology, 2020, 38 Suppl 126, 253-260.	0.8	1
14	Novel approaches for rescuing function of the salivary gland epithelium in primary Sjögren's syndrome. Clinical and Experimental Rheumatology, 2020, 38 Suppl 126, 261-270.	0.8	2
15	Salivary Gland Stem Cells Age Prematurely in Primary Sjögren's Syndrome. Arthritis and Rheumatology, 2019, 71, 133-142.	5.6	39
16	Small-molecule inhibitors and the salivary gland epithelium in Sjögren's syndrome. Expert Opinion on Investigational Drugs, 2019, 28, 605-616.	4.1	16
17	Dysregulation of NF-kB in glandular epithelial cells results in Sjögren's-like features. PLoS ONE, 2018, 13, e0200212.	2.5	17
18	Long-Term InÂVitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Reports, 2016, 6, 150-162.	4.8	175

SARAH PRINGLE

#	Article	IF	CITATIONS
19	Human Salivary Gland Stem Cells Functionally Restore Radiation Damaged Salivary Glands. Stem Cells, 2016, 34, 640-652.	3.2	174
20	Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer. Science Translational Medicine, 2015, 7, 305ra147.	12.4	165
21	Concise Review: Adult Salivary Gland Stem Cells and a Potential Therapy for Xerostomia. Stem Cells, 2013, 31, 613-619.	3.2	120
22	Isolation of Mouse Salivary Gland Stem Cells. Journal of Visualized Experiments, 2011, , .	0.3	33
23	The stem cell niche: a new target in medicine. Current Opinion in Orthopaedics, 2006, 17, 398-404.	0.3	8