List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2767856/publications.pdf Version: 2024-02-01

	53751	28275
11,340	45	105
citations	h-index	g-index
133	133	9654
docs citations	times ranked	citing authors
	11,340 citations 133 docs citations	11,34045citationsh-index133133docs citationstimes ranked

ΔΝΑΝΟ ΙΔΟΟΤΑ

#	Article	IF	CITATIONS
1	Lubricated Sliding of a Rigid Cylinder on a Viscoelastic Half Space. Tribology Letters, 2022, 70, 1.	1.2	11
2	Increased Sliding Friction of a Lubricated Soft Solid Using an Embedded Structure. Tribology Letters, 2022, 70, 1.	1.2	5
3	Lubricated soft normal elastic contact of a sphere: a new numerical method and experiment. Soft Matter, 2022, 18, 1219-1227.	1.2	3
4	Machine Learning-Guided Systematic Search of DNA Sequences for Sorting Carbon Nanotubes. ACS Nano, 2022, 16, 4705-4713.	7.3	10
5	Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nature Biomedical Engineering, 2022, 6, 267-275.	11.6	65
6	Enhancement of hydrodynamic friction by periodic variation of contact stiffness. Extreme Mechanics Letters, 2022, 54, 101735.	2.0	1
7	Fast, strong, and reversible adhesives with dynamic covalent bonds for potential use in wound dressing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	37
8	Friction Force During Lubricated Steady Sliding of a Rigid Cylinder on a Viscoelastic Substrate. Tribology Letters, 2021, 69, 1.	1.2	8
9	Meso-scale dislocations and friction of shape-complementary soft interfaces. Journal of the Royal Society Interface, 2021, 18, 20200940.	1.5	4
10	Length of mucin-like domains enhances cell-Ebola virus adhesion by increasing binding probability. Biophysical Journal, 2021, 120, 781-790.	0.2	1
11	Respiratory droplet resuspension near surfaces: Modeling and analysis. Journal of Applied Physics, 2021, 130, 024702.	1.1	4
12	Energetics of cracks and defects in soft materials: The role of surface stress. Extreme Mechanics Letters, 2021, 48, 101424.	2.0	1
13	A surface flattening method for characterizing the surface stress, drained Poisson's ratio and diffusivity of poroelastic gels. Soft Matter, 2021, 17, 7332-7340.	1.2	2
14	Surface Tension and the Strain-Dependent Topography of Soft Solids. Physical Review Letters, 2021, 127, 208001.	2.9	13
15	A perception-based nanosensor platform to detect cancer biomarkers. Science Advances, 2021, 7, eabj0852.	4.7	43
16	Adhesive contact between cylindrical (Ebola) and spherical (SARS-CoV-2) viral particles and a cell membrane. Mechanics of Soft Materials, 2020, 2, 11.	0.4	4
17	How surface stress transforms surface profiles and adhesion of rough elastic bodies. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200477.	1.0	7
18	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.	15.6	69

#	Article	IF	CITATIONS
19	Modeling of surface mechanical behaviors of soft elastic solids: theory and examples. Soft Matter, 2020, 16, 6875-6889.	1.2	13
20	Droplets on an elastic membrane: Configurational energy balance and modified Young equation. Journal of the Mechanics and Physics of Solids, 2020, 138, 103902.	2.3	20
21	Lubricated steady sliding of a rigid sphere on a soft elastic substrate: hydrodynamic friction in the Hertz limit. Soft Matter, 2020, 16, 2760-2773.	1.2	17
22	Enhancement of elastohydrodynamic friction by elastic hysteresis in a periodic structure. Soft Matter, 2020, 16, 1627-1635.	1.2	12
23	Pathway-Dependent Structures of DNA-Wrapped Carbon Nanotubes: Direct Sonication vs Surfactant/DNA Exchange. Journal of Physical Chemistry C, 2020, 124, 9045-9055.	1.5	19
24	Biomechanical characterization of TIM protein–mediated Ebola virus–host cell adhesion. Scientific Reports, 2019, 9, 267.	1.6	29
25	Learning to predict single-wall carbon nanotube-recognition DNA sequences. Npj Computational Materials, 2019, 5, .	3.5	31
26	Intrinsically reversible superglues via shape adaptation inspired by snail epiphragm. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13774-13779.	3.3	102
27	Crack propagation pattern and trapping mechanism of rolling a rigid cylinder on a periodically structured surface. Extreme Mechanics Letters, 2019, 29, 100475.	2.0	6
28	A surface with stress, extensional elasticity, and bending stiffness. Soft Matter, 2019, 15, 3817-3827.	1.2	13
29	Effects of strain-dependent surface stress on the adhesive contact of a rigid sphere to a compliant substrate. Soft Matter, 2019, 15, 2223-2231.	1.2	10
30	Effect of large deformation and surface stiffening on the transmission of a line load on a neo-Hookean half space. Soft Matter, 2018, 14, 1847-1855.	1.2	18
31	Quantification of DNA/SWCNT Solvation Differences by Aqueous Two-Phase Separation. Langmuir, 2018, 34, 1834-1843.	1.6	13
32	Indentation versus Rolling: Dependence of Adhesion on Contact Geometry for Biomimetic Structures. Langmuir, 2018, 34, 3827-3837.	1.6	8
33	Coarse-Grained Model for Zippering of SNARE from Partially Assembled States. Journal of Physical Chemistry B, 2018, 122, 10834-10840.	1.2	6
34	The effect of surface bending and surface stress on the transmission of a vertical line force in soft materials. Extreme Mechanics Letters, 2018, 23, 9-16.	2.0	3
35	Effect of surface bending and stress on the transmission of line force to an elastic substrate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170775.	1.0	4
36	Spontaneous Droplet Motion on a Periodically Compliant Substrate. Langmuir, 2017, 33, 4942-4947.	1.6	13

#	Article	IF	CITATIONS
37	A closed form large deformation solution of plate bending with surface effects. Soft Matter, 2017, 13, 386-393.	1.2	9
38	Interaction of Droplets Separated by an Elastic Film. Langmuir, 2017, 33, 75-81.	1.6	12
39	Elastocapillarity: Surface Tension and the Mechanics of Soft Solids. Annual Review of Condensed Matter Physics, 2017, 8, 99-118.	5.2	247
40	Energetic Basis of Single-Wall Carbon Nanotube Enantiomer Recognition by Single-Stranded DNA. Journal of Physical Chemistry C, 2017, 121, 17479-17487.	1.5	12
41	Adhesion Enhancement of a Gel-Elastomer Interface by Shape Complementarity. Biologically-inspired Systems, 2017, , 291-301.	0.4	1
42	Adhesion and Friction Enhancement of Film-Terminated Structures against Rough Surfaces. Tribology Letters, 2017, 65, 1.	1.2	8
43	Effect of surface tension on the relaxation of a viscoelastic halfâ€space perturbed by a point load. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 274-280.	2.4	7
44	Wetting of a partially immersed compliant rod. Journal of Applied Physics, 2016, 120, 195301.	1.1	3
45	Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure. Scientific Reports, 2016, 6, 26867.	1.6	13
46	Geometry of defects at shape-complementary soft interfaces. Extreme Mechanics Letters, 2016, 9, 74-83.	2.0	2
47	Surface tension measurement from the indentation of clamped thin films. Soft Matter, 2016, 12, 5121-5126.	1.2	16
48	Effect of surface tension on the adhesion between a rigid flat punch and a semi-infinite neo-Hookean half-space. Extreme Mechanics Letters, 2016, 9, 310-316.	2.0	15
49	Adhesion of Screen-Printed Silver Metallization to Crystalline Silicon Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 1141-1151.	1.5	6
50	Role reversal: Liquid "Cheerios―on a solid sense each other. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7294-7295.	3.3	4
51	Enhancement of Friction against a Rough Surface by a Ridge–Channel Surface Microstructure. Langmuir, 2015, 31, 7581-7589.	1.6	4
52	Coarse-Grained Model of SNARE-Mediated Docking. Biophysical Journal, 2015, 108, 2258-2269.	0.2	16
53	Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140727.	1.0	60
54	Adhesive contact of a rigid circular cylinder to a soft elastic substrate – the role of surface tension. Soft Matter, 2015, 11, 3844-3851.	1.2	24

#	Article	IF	CITATIONS
55	Planar equilibrium shapes of a liquid drop on a membrane. Soft Matter, 2015, 11, 8960-8967.	1.2	31
56	On track with nanotubes. Nature Nanotechnology, 2014, 9, 10-11.	15.6	5
57	Flattening of a patterned compliant solid by surface stress. Soft Matter, 2014, 10, 4084-4090.	1.2	52
58	Frictional auto-roughening of a surface with spatially varying stiffness. Soft Matter, 2014, 10, 2169-2177.	1.2	10
59	Effects of surface tension on the adhesive contact of a rigid sphere to a compliant substrate. Soft Matter, 2014, 10, 4625-4632.	1.2	69
60	Interaction of Single-Stranded DNA with Curved Carbon Nanotube Is Much Stronger Than with Flat Graphite. Journal of the American Chemical Society, 2014, 136, 12947-12957.	6.6	54
61	In-plane force–extension response of a polymer confined to a surface. European Polymer Journal, 2014, 51, 151-158.	2.6	4
62	Binding between DNA and Carbon Nanotubes Strongly Depends upon Sequence and Chirality. Langmuir, 2014, 30, 3176-3183.	1.6	47
63	Deformation near a liquid contact line on an elastic substrate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140085.	1.0	42
64	Interaction of the Complexin Accessory Helix with the C-Terminus of the SNARE Complex: Molecular-Dynamics Model of the Fusion Clamp. Biophysical Journal, 2013, 105, 679-690.	0.2	41
65	Structural Stability and Binding Strength of a Designed Peptide–Carbon Nanotube Hybrid. Journal of Physical Chemistry C, 2013, 117, 26255-26261.	1.5	13
66	Structural Characteristics of Oligomeric DNA Strands Adsorbed onto Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2013, 117, 132-140.	1.2	47
67	Gravity and Surface Tension Effects on the Shape Change of Soft Materials. Langmuir, 2013, 29, 8665-8674.	1.6	44
68	Brownian Dynamics Simulation of Peeling a Strongly-Adsorbed Polymer Molecule from a Frictionless Substrate. Langmuir, 2013, 29, 1435-1445.	1.6	10
69	Solid surface tension measured by a liquid drop under a solid film. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10541-10545.	3.3	82
70	Preload-responsive adhesion: effects of aspect ratio, tip shape and alignment. Journal of the Royal Society Interface, 2013, 10, 20130171.	1.5	38
71	Microstructures: Structure and Energetics of Dislocations at Micro-Structured Complementary Interfaces Govern Adhesion (Adv. Funct. Mater. 27/2013). Advanced Functional Materials, 2013, 23, 3452-3452.	7.8	3
72	Structure and Energetics of Dislocations at Micro‣tructured Complementary Interfaces Govern Adhesion. Advanced Functional Materials, 2013, 23, 3453-3462.	7.8	7

#	Article	IF	CITATIONS
73	Adhesion energy can regulate vesicle fusion and stabilize partially fused states. Journal of the Royal Society Interface, 2012, 9, 1555-1567.	1.5	12
74	Surface-tension-induced flattening of a nearly plane elastic solid. Physical Review E, 2012, 85, 051602.	0.8	60
75	Discharge During Detachment of Micro-Structured PDMS Sheds Light on the Role of Electrostatics in Adhesion. Journal of Adhesion, 2012, 88, 589-607.	1.8	19
76	Adhesion of Microchannel-Based Complementary Surfaces. Langmuir, 2012, 28, 4213-4222.	1.6	20
77	DNA Base Dimers Are Stabilized by Hydrogen-Bonding Interactions Including Non-Watson–Crick Pairing Near Graphite Surfaces. Journal of Physical Chemistry B, 2012, 116, 12088-12094.	1.2	26
78	Molecular-Basis of Single-Walled Carbon Nanotube Recognition by Single-Stranded DNA. Nano Letters, 2012, 12, 1464-1469.	4.5	115
79	DNA Conjugated SWCNTs Enter Endothelial Cells via Rac1 Mediated Macropinocytosis. Nano Letters, 2012, 12, 1826-1830.	4.5	49
80	Quantifying Interactions between DNA Oligomers and Graphite Surface Using Single Molecule Force Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 13896-13903.	1.5	46
81	Adhesive contact between a rippled elastic surface and a rigid spherical indenter: from partial to full contact. Soft Matter, 2011, 7, 10728.	1.2	41
82	Sequence-Specific Self-Stitching Motif of Short Single-Stranded DNA on a Single-Walled Carbon Nanotube. Journal of the American Chemical Society, 2011, 133, 13545-13550.	6.6	76
83	Recognition Ability of DNA for Carbon Nanotubes Correlates with Their Binding Affinity. Langmuir, 2011, 27, 8282-8293.	1.6	90
84	Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Materials Science and Engineering Reports, 2011, 72, 253-253.	14.8	44
85	Adhesion Selectivity Using Rippled Surfaces. Advanced Functional Materials, 2011, 21, 547-555.	7.8	68
86	Adhesion selectivity by electrostatic complementarity. II. Two-dimensional analysis. Journal of Applied Physics, 2011, 110, 054903.	1.1	6
87	Adhesion selectivity by electrostatic complementarity. I. One-dimensional stripes of charge. Journal of Applied Physics, 2011, 110, 054902.	1.1	7
88	Sequence-dependent force response during peeling of single-stranded DNA from graphite. Physical Review E, 2010, 81, 021805.	0.8	11
89	Long range interactions in nanoscale science. Reviews of Modern Physics, 2010, 82, 1887-1944.	16.4	359
90	Active Switching of Adhesion in a Film-Terminated Fibrillar Structure. Langmuir, 2010, 26, 15464-15471.	1.6	46

#	Article	IF	CITATIONS
91	Molecular Simulation of DNA β-Sheet and β-Barrel Structures on Graphite and Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 13267-13276.	1.5	28
92	Adhesion of a Fibrillar Interface on Wet and Rough Surfaces. Journal of Adhesion, 2010, 86, 39-61.	1.8	32
93	Effect of fibril arrangement on crack trapping in a filmâ€ŧerminated fibrillar interface. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2368-2384.	2.4	9
94	DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature, 2009, 460, 250-253.	13.7	996
95	Mechanism of Sliding Friction on a Film-Terminated Fibrillar Interface. Langmuir, 2009, 25, 2772-2780.	1.6	23
96	Effect of Rate on Adhesion and Static Friction of a Film-Terminated Fibrillar Interface. Langmuir, 2009, 25, 2765-2771.	1.6	48
97	Measurement of Electrostatic Properties of DNA-Carbon Nanotube Hybrids by Capillary Electrophoresis. Journal of Physical Chemistry C, 2009, 113, 13616-13621.	1.5	35
98	Compliance of a microfibril subjected to shear and normal loads. Journal of the Royal Society Interface, 2008, 5, 1087-1097.	1.5	20
99	Mechanically tunable dry adhesive from wrinkled elastomers. Soft Matter, 2008, 4, 1830.	1.2	207
100	Model-Independent Extraction of Adhesion Energy from Indentation Experiments. Langmuir, 2008, 24, 9401-9409.	1.6	29
101	Strongly enhanced static friction using a film-terminated fibrillar interface. Soft Matter, 2008, 4, 618.	1.2	53
102	Biomimetic Core–Shell Fibril for Enhanced Adhesion. Langmuir, 2008, 24, 6182-6188.	1.6	3
103	Peeling Single-Stranded DNA from Graphite Surface to Determine Oligonucleotide Binding Energy by Force Spectroscopy. Nano Letters, 2008, 8, 4365-4372.	4.5	176
104	A two-dimensional model for enhanced adhesion of film-terminated fibrillar interfaces by crack trapping. Journal of Applied Physics, 2008, 104, .	1.1	18
105	Biologically inspired crack trapping for enhanced adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10786-10791.	3.3	234
106	Design of bio-inspired fibrillar interfaces for contact and adhesion — theory and experiments. Journal of Adhesion Science and Technology, 2007, 21, 1259-1280.	1.4	35
107	Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays. Applied Physics Letters, 2007, 91, .	1.5	57
108	Structure of Homopolymer DNAâ^'CNT Hybrids. Journal of Physical Chemistry C, 2007, 111, 17835-17845.	1.5	109

#	Article	IF	CITATIONS
109	Controlled Two-Dimensional Pattern of Spontaneously Aligned Carbon Nanotubes. Nano Letters, 2006, 6, 55-60.	4.5	81
110	Adhesive contact driven by electrostatic forces. Journal of Applied Physics, 2006, 99, 054906.	1.1	13
111	Thermal Fluctuations Limit the Adhesive Strength of Compliant Solids. Journal of Adhesion, 2006, 82, 671-696.	1.8	28
112	Adhesion enhancement in a biomimetic fibrillar interface. Acta Biomaterialia, 2005, 1, 367-375.	4.1	75
113	Collapse of single-walled carbon nanotubes. Journal of Applied Physics, 2005, 97, 074310.	1.1	76
114	Adhesion between single-walled carbon nanotubes. Journal of Applied Physics, 2005, 97, 074304.	1.1	52
115	Theory of Structure-Based Carbon Nanotube Separations by Ion-Exchange Chromatography of DNA/CNT Hybrids. Journal of Physical Chemistry B, 2005, 109, 2559-2566.	1.2	135
116	Effect of Stamp Deformation on the Quality of Microcontact Printing:Â Theory and Experiment. Langmuir, 2004, 20, 6430-6438.	1.6	141
117	Understanding the Nature of the DNA-Assisted Separation of Single-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy. Nano Letters, 2004, 4, 543-550.	4.5	191
118	Peptides with selective affinity for carbon nanotubes. Nature Materials, 2003, 2, 196-200.	13.3	520
119	DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials, 2003, 2, 338-342.	13.3	2,573
120	Lithographically Cut Single-Walled Carbon Nanotubes:  Controlling Length Distribution and Introducing End-Group Functionality. Nano Letters, 2003, 3, 1007-1012.	4.5	63
121	Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly. Science, 2003, 302, 1545-1548.	6.0	1,547
122	Mechanics of Adhesion Through a Fibrillar Microstructure. Integrative and Comparative Biology, 2002, 42, 1140-1145.	0.9	200
123	Fracture of Glass/Poly(vinyl butyral) (Butacite®) Laminates in Biaxial Flexure. Journal of the American Ceramic Society, 1999, 82, 1761-1770.	1.9	116
124	Analysis of Glass/Polyvinyl Butyral Laminates Subjected to Uniform Pressure. Journal of Engineering Mechanics - ASCE, 1999, 125, 435-442.	1.6	150
125	Viscosities and Sintering Rates of Composite Packings of Spheres. Journal of the American Ceramic Society, 1995, 78, 521-528.	1.9	57
126	Vibrational Technique for Stress Measurement in Films: I, Ideal Membrane Behavior. Journal of the American Ceramic Society, 1994, 77, 625-635.	1.9	26

#	Article	IF	CITATIONS
127	Simulation of the Viscous Sintering of Coated Particles. Journal of the American Ceramic Society, 1994, 77, 2237-2239.	1.9	25
128	Crack Growth and Damage in Constrained Sintering Films. Journal of the American Ceramic Society, 1993, 76, 2475-2485.	1.9	156
129	Viscosities and Sintering Rates of a Two-Dimensional Granular Composite. Journal of the American Ceramic Society, 1993, 76, 3123-3135.	1.9	52
130	Simulation of the Viscous Sintering of Two Particles. Journal of the American Ceramic Society, 1990, 73, 173-177.	1.9	90
131	Isotropic Constitutive Model for Sintering Particle Packings. Journal of the American Ceramic Society, 1990, 73, 2266-2273.	1.9	79