
Brian P Bledsoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2767814/publications.pdf Version: 2024-02-01

RDIAN P RIEDSOF

#	Article	IF	CITATIONS
1	The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 2010, 55, 147-170.	1.2	1,227
2	The Natural Sediment Regime in Rivers: Broadening the Foundation for Ecosystem Management. BioScience, 2015, 65, 358-371.	2.2	346
3	Hydrologic variation with land use across the contiguous United States: Geomorphic and ecological consequences for stream ecosystems. Geomorphology, 2006, 79, 264-285.	1.1	335
4	Stream restoration strategies for reducing river nitrogen loads. Frontiers in Ecology and the Environment, 2008, 6, 529-538.	1.9	251
5	EFFECTS OF URBANIZATION ON CHANNEL INSTABILITY. Journal of the American Water Resources Association, 2001, 37, 255-270.	1.0	204
6	Predicting streamflow regime metrics for ungauged streamsin Colorado, Washington, and Oregon. Journal of Hydrology, 2006, 325, 241-261.	2.3	131
7	Logistic analysis of channel pattern thresholds: meandering, braiding, and incising. Geomorphology, 2001, 38, 281-300.	1.1	112
8	How do flow peaks and durations change in suburbanizing semi-arid watersheds? A southern California case study. Journal of Hydrology, 2011, 405, 69-82.	2.3	107
9	Are Best-Management-Practice Criteria Really Environmentally Friendly?. Journal of Water Resources Planning and Management - ASCE, 2001, 127, 150-154.	1.3	103
10	Developing linkages between species traits and multiscaled environmental variation to explore vulnerability of stream benthic communities to climate change. Journal of the North American Benthological Society, 2010, 29, 1441-1458.	3.0	98
11	Channel Evolution Model of Semiarid Stream Response to Urbanâ€Induced Hydromodification ¹ . Journal of the American Water Resources Association, 2012, 48, 722-744.	1.0	90
12	Management of Large Wood in Streams: An Overview and Proposed Framework for Hazard Evaluation. Journal of the American Water Resources Association, 2016, 52, 315-335.	1.0	84
13	WIDTH OF STREAMS AND RIVERS IN RESPONSE TO VEGETATION, BANK MATERIAL, AND OTHER FACTORS. Journal of the American Water Resources Association, 2004, 40, 1159-1172.	1.0	80
14	Stream power framework for predicting geomorphic change: The 2013 Colorado Front Range flood. Geomorphology, 2017, 292, 178-192.	1.1	69
15	Vegetation along hydrologic and edaphic gradients in a North Carolina coastal plain creek bottom and implications for restoration. Wetlands, 2000, 20, 126-147.	0.7	65
16	Effects of Urbanization on Flow Duration and Stream Flashiness: A Case Study of Puget Sound Streams, Western Washington, <scp>USA</scp> . Journal of the American Water Resources Association, 2017, 53, 493-507.	1.0	58
17	QUANTIFICATION OF INCISED CHANNEL EVOLUTION AND EQUILIBRIUM. Journal of the American Water Resources Association, 2002, 38, 861-870.	1.0	56
18	Controls on spatial variations in flow resistance along steep mountain streams. Water Resources Research, 2010, 46, .	1.7	56

BRIAN P BLEDSOE

#	Article	IF	CITATIONS
19	Controls on atâ€aâ€station hydraulic geometry in steep headwater streams, Colorado, USA. Earth Surface Processes and Landforms, 2010, 35, 1820-1837.	1.2	55
20	Challenges to realizing the potential of nature-based solutions. Current Opinion in Environmental Sustainability, 2020, 45, 49-55.	3.1	55
21	Stream nitrate uptake and transient storage over a gradient of geomorphic complexity, northâ€central Colorado, USA. Hydrological Processes, 2012, 26, 3241-3252.	1.1	52
22	Stream Erosion Potential and Stormwater Management Strategies. Journal of Water Resources Planning and Management - ASCE, 2002, 128, 451-455.	1.3	51
23	Incorporating ecological knowledge into ecoinformatics: An example of modeling hierarchically structured aquatic communities with neural networks. Ecological Informatics, 2006, 1, 33-42.	2.3	48
24	Benchmarking sustainability of urban water infrastructure systems in China. Journal of Cleaner Production, 2018, 170, 330-338.	4.6	45
25	Range of variability of channel complexity in urban, restored and forested reference streams. Freshwater Biology, 2012, 57, 1076-1095.	1.2	42
26	What role does stream restoration play in nutrient management?. Critical Reviews in Environmental Science and Technology, 2017, 47, 335-371.	6.6	40
27	Physical context for theoretical approaches to sediment transport magnitudeâ€frequency analysis in alluvial channels. Water Resources Research, 2014, 50, 7900-7914.	1.7	38
28	Framework and Tool for Rapid Assessment of Stream Susceptibility to Hydromodification ¹ . Journal of the American Water Resources Association, 2012, 48, 788-808.	1.0	37
29	Shifting currents: Managing freshwater systems for ecological resilience in a changing climate. Water Security, 2019, 8, 100049.	1.2	34
30	Using NDVI to measure precipitation in semi-arid landscapes. Journal of Arid Environments, 2016, 131, 15-24.	1.2	31
31	USE OF INCISED CHANNEL EVOLUTION MODELS IN UNDERSTANDING REHABILITATION ALTERNATIVES. Journal of the American Water Resources Association, 2002, 38, 151-160.	1.0	30
32	Longitudinal variability of geomorphic response to floods. Earth Surface Processes and Landforms, 2018, 43, 3099-3113.	1.2	30
33	Representing the bed roughness of coarse-grained streams in computational fluid dynamics. Earth Surface Processes and Landforms, 2006, 31, 736-749.	1.2	29
34	Cumulative Effects of Low Impact Development on Watershed Hydrology in a Mixed Land-Cover System. Water (Switzerland), 2018, 10, 991.	1.2	28
35	Parsimonious sediment transport equations based on Bagnold's stream power approach. Earth Surface Processes and Landforms, 2018, 43, 242-258.	1.2	26
36	Designing flows to enhance ecosystem functioning in heavily altered rivers. Ecological Applications, 2020, 30, e02005.	1.8	26

BRIAN P BLEDSOE

#	Article	IF	CITATIONS
37	Comparative analysis of bed resistance partitioning in highâ€gradient streams. Water Resources Research, 2011, 47, .	1.7	24
38	Application of regional flowâ€ecology relationships to inform watershed management decisions: Application of the ELOHA framework in the San Diego River watershed, California, USA. Ecohydrology, 2017, 10, e1869.	1.1	24
39	Tools for managing hydrologic alteration on a regional scale: Setting targets to protect stream health. Freshwater Biology, 2018, 63, 786-803.	1.2	24
40	The impacts of ski slope development on stream channel morphology in the White River National Forest, Colorado, USA. Geomorphology, 2009, 103, 375-388.	1.1	23
41	Tools for managing hydrologic alteration on a regional scale: Estimating changes in flow characteristics at ungauged sites. Freshwater Biology, 2018, 63, 769-785.	1.2	21
42	Probabilistic mapping of flood hazards: Depicting uncertainty in streamflow, land use, and geomorphic adjustment. Anthropocene, 2020, 29, 100231.	1.6	21
43	Spatial characterization of roughness elements in highâ€gradient channels of the Fraser Experimental Forest, Colorado, USA. Water Resources Research, 2014, 50, 6015-6029.	1.7	18
44	GeoTools: A Toolkit for Fluvial System Analysis. Journal of the American Water Resources Association, 2007, 43, 757-772.	1.0	17
45	A network scale, intermediate complexity model for simulating channel evolution over years to decades. Journal of Hydrology, 2018, 566, 886-900.	2.3	16
46	Influences of sudden changes in discharge and physical stream characteristics on transient storage and nitrate uptake in an urban stream. Hydrological Processes, 2015, 29, 1466-1479.	1.1	13
47	Targeted hydrologic model calibration to improve prediction of ecologically-relevant flow metrics. Journal of Hydrology, 2019, 573, 546-556.	2.3	12
48	Low-Flow Trends at Southeast United States Streamflow Gauges. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	12
49	Uncertainty and sensitivity in a bank stability model: implications for estimating phosphorus loading. Earth Surface Processes and Landforms, 2017, 42, 612-623.	1.2	11
50	Assessing hydrologic and water quality effects of land use conversion to <i>Brassica carinata</i> as a winter biofuel crop in the southeastern coastal plain of Georgia, USA using the SWAT model. GCB Bioenergy, 2021, 13, 473-492.	2.5	10
51	Quantifying pollutant loading from channel sources: Watershed-scale application of the River Erosion Model. Journal of Environmental Management, 2019, 234, 104-114.	3.8	9
52	Integrating stormwater management and stream restoration strategies for greater water quality benefits. Journal of Environmental Quality, 2020, 49, 569-581.	1.0	9
53	Characterizing hydroclimatic variability in tributaries of the Upper Colorado River Basin—WY1911-2001. Journal of Hydrology, 2010, 380, 260-276.	2.3	8
54	An ecohydrological stream type classification of intermittent and ephemeral streams in the southwestern United States. Journal of Arid Environments, 2018, 155, 16-35.	1.2	8

BRIAN P BLEDSOE

#	Article	IF	CITATIONS
55	Full Spectrum Analytical Channel Design with the Capacity/Supply Ratio (CSR). Water (Switzerland), 2017, 9, 271.	1.2	7
56	From hubris to humility: Transcending original sin in managing hydroclimatic risk. Anthropocene, 2020, 30, 100239.	1.6	7
57	Infrastructure investment must incorporate Nature's lessons in a rapidly changing world. One Earth, 2021, 4, 1361-1364.	3.6	7
58	The effect of flow data resolution on sediment yield estimation and channel design. Journal of Hydrology, 2016, 538, 429-439.	2.3	5
59	Frontiers in assessing septic systems vulnerability in coastal Georgia, USA: Modeling approach and management implications. PLoS ONE, 2021, 16, e0256606.	1.1	5
60	Ecoâ€hydraulic Evaluation of a Whitewater Park as a Fish Passage Barrier. Journal of the American Water Resources Association, 2016, 52, 420-442.	1.0	4
61	Effects of Design and Climate on Bioretention Effectiveness for Watershed-Scale Hydrologic Benefits. Journal of Sustainable Water in the Built Environment, 2022, 8, .	0.9	4
62	Simplified Uncertainty Bounding: An Approach for Estimating Flood Hazard Uncertainty. Water (Switzerland), 2022, 14, 1618.	1.2	2
63	Scale-Dependent Effects of Bank Vegetation on Channel Processes: Field Data, Computational Fluid Dynamics Modeling, and Restoration Design. Geophysical Monograph Series, 2013, , 151-165.	0.1	1
64	Stream Restoration as a BMP: Development of a National Performance Database and Crediting Guidance. Proceedings of the Water Environment Federation, 2017, 2017, 3551-3558.	0.0	0
65	Urban Floodplains: Changing Climate, Land Use, and River Channels. Regions, 2017, 306, 18-20.	0.1	0