List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2767384/publications.pdf Version: 2024-02-01

Ιναιλ Β Ζαβιότεκα

#	Article	IF	CITATIONS
1	Sex-specific lung cancer risk among radiation workers in the million-person study and patients TB-Fluoroscopy. International Journal of Radiation Biology, 2022, 98, 769-780.	1.0	20
2	Association between exposure to radioactive iodine after the Chernobyl accident and thyroid volume in Belarus 10-15 years later. Environmental Health, 2022, 21, 5.	1.7	2
3	Fluoroscopy X-Ray Organ-Specific Dosimetry System (FLUXOR) for Estimation of Organ Doses and Their Uncertainties in the Canadian Fluoroscopy Cohort Study. Radiation Research, 2021, 195, 385-396.	0.7	1
4	Common genetic polymorphisms contribute to the association between chronic lymphocytic leukaemia and non-melanoma skin cancer. International Journal of Epidemiology, 2021, 50, 1325-1334.	0.9	4
5	Introduction to the Second Bill Morgan Memorial Special Issue: an update on low dose biology, epidemiology, its integration and implications for radiation protection. International Journal of Radiation Biology, 2021, 97, 1-2.	1.0	Ο
6	Descriptive characteristics of occupational exposures and medical follow-up in the cohort of workers of the Siberian Group of Chemical Enterprises in Seversk, Russia. International Journal of Radiation Biology, 2021, 97, 1-13.	1.0	1
7	Association Between 131I Exposure After the Chernobyl Accident and Thyroid Volume in Children in Belarus. Journal of the Endocrine Society, 2021, 5, A856-A857.	0.1	Ο
8	Cohort profile: four early uranium processing facilities in the US and Canada. International Journal of Radiation Biology, 2021, 97, 833-847.	1.0	10
9	Lymphoma and multiple myeloma in cohorts of persons exposed to ionising radiation at a young age. Leukemia, 2021, 35, 2906-2916.	3.3	7
10	591The "Big 6― A purpose-based framework for motivating and teaching epidemiologic methods. International Journal of Epidemiology, 2021, 50, .	0.9	0
11	Estimation of Heights and Body Masses of Tuberculosis Patients in the Canadian Fluoroscopy Cohort Study for Use in Individual Dosimetry. Health Physics, 2021, 120, 278-287.	0.3	1
12	Caseâ€control versus caseâ€only estimates of geneâ€environment interactions with common and misclassified clinical diagnosis. Genetic Epidemiology, 2020, 44, 4-15.	0.6	0
13	Organ Doses from Chest Radiographs in Tuberculosis Patients in Canada and Their Uncertainties in Periods from 1930 to 1969. Health Physics, 2020, 119, 176-191.	0.3	1
14	Radio-biologically motivated modeling of radiation risks of mortality from ischemic heart diseases in the Canadian fluoroscopy cohort study. Radiation and Environmental Biophysics, 2020, 59, 63-78.	0.6	6
15	Occupational radiation exposure and morbidity of circulatory disease among diagnostic medical radiation workers in South Korea. Occupational and Environmental Medicine, 2020, 77, 752-760.	1.3	13
16	Genetic effect estimates in case ontrol studies when a continuous variable is omitted from the model. Genetic Epidemiology, 2020, 44, 261-271.	0.6	0
17	A systematic review and meta-analysis examining the effects of cannabis and its derivatives in adults with malignant CNS tumors. Neuro-Oncology Practice, 2020, 7, 376-383.	1.0	6
18	PUMA – pooled uranium miners analysis: cohort profile. Occupational and Environmental Medicine, 2020, 77, 194-200.	1.3	29

#	Article	IF	CITATIONS
19	Occupational exposure to ionizing radiation and risk of lymphoma subtypes: results of the Epilymph European case-control study. Environmental Health, 2020, 19, 43.	1.7	3
20	Projecting thyroid cancer risk to the general public from radiation exposure following hypothetical severe nuclear accidents in Canada. Journal of Radiological Protection, 2020, 40, 1091-1110.	0.6	3
21	Organ-specific dose coefficients derived from Monte Carlo simulations for historical (1930s to 1960s) fluoroscopic and radiographic examinations of tuberculosis patients. Journal of Radiological Protection, 2019, 39, 950-965.	0.6	11
22	Methods to account for uncertainties in exposure assessment in studies of environmental exposures. Environmental Health, 2019, 18, 31.	1.7	23
23	Next-Generation Sequencing of Uveal Melanoma for Detection of Genetic Alterations Predicting Metastasis. Translational Vision Science and Technology, 2019, 8, 18.	1.1	44
24	Low radon exposures and lung cancer risk: joint analysis of the Czech, French, and Beaverlodge cohorts of uranium miners. International Archives of Occupational and Environmental Health, 2019, 92, 747-762.	1.1	24
25	Analysis of mortality in a pooled cohort of Canadian and German uranium processing workers with no mining experience. International Archives of Occupational and Environmental Health, 2018, 91, 91-103.	1.1	19
26	Circulatory disease in French nuclear fuel cycle workers chronically exposed to uranium: a nested case–control study. Occupational and Environmental Medicine, 2018, 75, 270-276.	1.3	22
27	Leukaemia and myeloid malignancy among people exposed to low doses (<100 mSv) of ionising radiation during childhood: a pooled analysis of nine historical cohort studies. Lancet Haematology,the, 2018, 5, e346-e358.	2.2	103
28	Genomic characterization of chronic lymphocytic leukemia (CLL) in radiation-exposed Chornobyl cleanup workers. Environmental Health, 2018, 17, 43.	1.7	11
29	Clinical characteristics of chronic lymphocytic leukemia occurring in chornobyl cleanup workers. Hematological Oncology, 2017, 35, 215-224.	0.8	7
30	Factors associated with serum thyroglobulin in a Ukrainian cohort exposed to iodine-131 from the accident at the Chernobyl Nuclear Plant. Environmental Research, 2017, 156, 801-809.	3.7	8
31	Radiation-associated circulatory disease mortality in a pooled analysis of 77,275 patients from the Massachusetts and Canadian tuberculosis fluoroscopy cohorts. Scientific Reports, 2017, 7, 44147.	1.6	28
32	Risk of Thyroid Nodules in Residents of Belarus Exposed to Chernobyl Fallout as Children and Adolescents. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2207-2217.	1.8	44
33	30Âyears After the Chernobyl Nuclear Accident: Time for Reflection and Re-evaluation of Current Disaster Preparedness Plans. Journal of Urban Health, 2016, 93, 407-413.	1.8	15
34	Mortality (1968–2008) in a French cohort of uranium enrichment workers potentially exposed to rapidly soluble uranium compounds. Occupational and Environmental Medicine, 2016, 73, 167-174.	1.3	31
35	Non-thyroid cancer incidence in Belarusian residents exposed to Chernobyl fallout in childhood and adolescence: Standardized Incidence Ratio analysis, 1997–2011. Environmental Research, 2016, 147, 44-49.	3.7	10
36	Circulatory disease mortality in the Massachusetts tuberculosis fluoroscopy cohort study. European Journal of Epidemiology, 2016, 31, 287-309.	2.5	13

#	Article	IF	CITATIONS
37	Dosimetry Support of the Ukrainian-American Case-control Study of Leukemia and Related Disorders Among Chornobyl Cleanup Workers. Health Physics, 2015, 109, 296-301.	0.3	11
38	Impact of Uncertainties in Exposure Assessment on Thyroid Cancer Risk among Persons in Belarus Exposed as Children or Adolescents Due to the Chernobyl Accident. PLoS ONE, 2015, 10, e0139826.	1.1	25
39	Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. British Journal of Cancer, 2015, 113, 1556-1564.	2.9	29
40	Risk of Thyroid Follicular Adenoma Among Children and Adolescents in Belarus Exposed to Iodine-131 After the Chornobyl Accident. American Journal of Epidemiology, 2015, 182, 781-790.	1.6	19
41	Analysis of thyroid malignant pathologic findings identified during 3 rounds of screening (1997â€2008) of a cohort of children and adolescents from Belarus exposed to radioiodines after the <scp>C</scp> hernobyl accident. Cancer, 2015, 121, 457-466.	2.0	46
42	Potential Increased Risk of Ischemic Heart Disease Mortality With Significant Dose Fractionation in the Canadian Fluoroscopy Cohort Study. American Journal of Epidemiology, 2014, 179, 120-131.	1.6	44
43	Leukemia, lymphoma and multiple myeloma mortality (1950–1999) and incidence (1969–1999) in the Eldorado uranium workers cohort. Environmental Research, 2014, 130, 43-50.	3.7	24
44	Impact of Uncertainties in Exposure Assessment on Estimates of Thyroid Cancer Risk among Ukrainian Children and Adolescents Exposed from the Chernobyl Accident. PLoS ONE, 2014, 9, e85723.	1.1	44
45	Mortality (1950–1999) and cancer incidence (1969–1999) of workers in the Port Hope cohort study exposed to a unique combination of radium, uranium and γ-ray doses. BMJ Open, 2013, 3, e002159.	0.8	42
46	Measures of Thyroid Function among Belarusian Children and Adolescents Exposed to Iodine-131 from the Accident at the Chernobyl Nuclear Plant. Environmental Health Perspectives, 2013, 121, 865-871.	2.8	51
47	Radiation and the Risk of Chronic Lymphocytic and Other Leukemias among Chornobyl Cleanup Workers. Environmental Health Perspectives, 2013, 121, 59-65.	2.8	106
48	Systematic Review and Meta-analysis of Circulatory Disease from Exposure to Low-Level Ionizing Radiation and Estimates of Potential Population Mortality Risks. Environmental Health Perspectives, 2012, 120, 1503-1511.	2.8	296
49	Vitamin D, calcium, and retinol intake, and pancreatic cancer in a population-based case–control study in the San Francisco Bay area. Cancer Causes and Control, 2011, 22, 91-100.	0.8	30
50	Urinary lodine and Goiter Prevalence in Belarus: Experience of the Belarus–American Cohort Study of Thyroid Cancer and Other Thyroid Diseases Following the Chornobyl Nuclear Accident. Thyroid, 2011, 21, 429-437.	2.4	15
51	I-131 Dose Response for Incident Thyroid Cancers in Ukraine Related to the Chornobyl Accident. Environmental Health Perspectives, 2011, 119, 933-939.	2.8	178
52	Mortality (1950–1999) and Cancer Incidence (1969–1999) in the Cohort of Eldorado Uranium Workers. Radiation Research, 2010, 174, 773.	0.7	87
53	Subclinical Hypothyroidism after Radioiodine Exposure: Ukrainian–American Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident (1998–2000). Environmental Health Perspectives, 2009, 117, 745-750.	2.8	39
54	The Ukrainian-American Study of Leukemia and Related Disorders among Chornobyl Cleanup Workers from Ukraine: II. Estimation of Bone Marrow Doses. Radiation Research, 2008, 170, 698.	0.7	31

#	Article	IF	CITATIONS
55	The Ukrainian-American Study of Leukemia and Related Disorders among Chornobyl Cleanup Workers from Ukraine: III. Radiation Risks. Radiation Research, 2008, 170, 711-720.	0.7	85
56	Differences in Sonographic Conspicuity According to Papillary Thyroid Cancer Subtype: Results of the Ukrainian–American Cohort Study After the Chornobyl Accident. American Journal of Roentgenology, 2008, 191, W293-W298.	1.0	6
57	Protective Effects of B Vitamins and Antioxidants on the Risk of Arsenic-Related Skin Lesions in Bangladesh. Environmental Health Perspectives, 2008, 116, 1056-1062.	2.8	69
58	A Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident: Dose-Response Analysis of Thyroid Follicular Adenomas Detected during First Screening in Ukraine (1998-2000). American Journal of Epidemiology, 2007, 167, 305-312.	1.6	41
59	A cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident. Cancer, 2006, 107, 2559-2566.	2.0	35
60	A Cohort Study of Thyroid Cancer and Other Thyroid Diseases After the Chornobyl Accident: Thyroid Cancer in Ukraine Detected During First Screening. Journal of the National Cancer Institute, 2006, 98, 897-903.	3.0	206
61	Increased Risk of Squamous Cell Esophageal Cancer after Adjuvant Radiation Therapy for Primary Breast Cancer. American Journal of Epidemiology, 2005, 161, 330-337.	1.6	79
62	Analysis of Mortality among Canadian Nuclear Power Industry Workers after Chronic Low-Dose Exposure to Ionizing Radiation. Radiation Research, 2004, 161, 633-641.	0.7	85
63	Analysis of the Mortality Experience amongst U.S. Nuclear Power Industry Workers after Chronic Low-Dose Exposure to Ionizing Radiation. Radiation Research, 2004, 162, 517-526.	0.7	136
64	Therapy-induced thoracic malignancies. Clinics in Chest Medicine, 2004, 25, 217-224.	0.8	11
65	A Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident: Objectives, Design and Methods. Radiation Research, 2004, 161, 481-492.	0.7	104
66	Lung carcinoma after radiation therapy in women treated with lumpectomy or mastectomy for primary breast carcinoma. Cancer, 2003, 97, 1404-1411.	2.0	133
67	Association between exposures to radon and γâ€ray radiation and histologic type of lung cancer in Eldorado uranium mining and milling workers from Canada. Cancer, 0, , .	2.0	0