
William Mars

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2767147/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Heat Build-Up and Rolling Resistance Analysis of a Solid Tire: Experimental Observation and Numerical Simulation with Thermo-Mechanical Coupling Method. Polymers, 2022, 14, 2210.	4.5	8
2	Incremental, Critical Plane Analysis of Standing Wave Development, Self-Heating, and Fatigue during Regulatory High-Speed Tire Testing Protocols. Tire Science and Technology, 2021, 49, 172-205.	0.4	6
3	Characterizing Distributions of Tensile Strength and Crack Precursor Size to Evaluate Filler Dispersion Effects and Reliability of Rubber. Polymers, 2020, 12, 203.	4.5	25
4	The Fatigue Threshold of Rubber and Its Characterization Using the Cutting Method. Advances in Polymer Science, 2020, , 57-83.	0.8	11
5	Finite Element Modeling and Critical Plane Analysis of a Cut-and-Chip Experiment for Rubber. Tire Science and Technology, 2020, , .	0.4	5
6	Characterisation of cut and chip behaviour for NR, SBR and BR compounds with an instrumented laboratory device. Plastics, Rubber and Composites, 2019, 48, 14-23.	2.0	8
7	Computing Tire Component Durability via Critical Plane Analysis. Tire Science and Technology, 2019, 47, 31-54.	0.4	13
8	Characterizing the Intrinsic Strength (Fatigue Threshold) of Natural Rubber/Butadiene Rubber Blends. Tire Science and Technology, 2019, 47, 292-307.	0.4	19
9	FINITELY SCOPED, HIGH RELIABILITY FATIGUE CRACK GROWTH MEASUREMENTS. Rubber Chemistry and Technology, 2018, 91, 644-650.	1.2	3
10	FATIGUE CHARACTERIZATION OF A THERMOPLASTIC ELASTOMER. Rubber Chemistry and Technology, 2017, 90, 367-380.	1.2	17
11	Crack precursor size for natural rubber inferred from relaxing and non-relaxing fatigue experiments. International Journal of Fatigue, 2015, 80, 50-57.	5.7	27
12	John R. Luchini — Tire Science Giant. Tire Science and Technology, 2013, 41, 228-231.	0.4	0
13	Energy release rate of small cracks in hyperelastic materials. International Journal of Non-Linear Mechanics, 2012, 47, 22-29.	2.6	35
14	ANALYSIS OF STIFFNESS VARIATIONS IN CONTEXT OF STRAIN-, STRESS-, AND ENERGY-CONTROLLED PROCESSES. Rubber Chemistry and Technology, 2011, 84, 178-186.	1.2	11
15	Fatigue Investigation of Elastomeric Structures. Tire Science and Technology, 2010, 38, 194-212.	0.4	13
16	Computed Dependence of Rubber'S Fatigue Behavior on Strain Crystallization. Rubber Chemistry and Technology, 2009, 82, 51-61.	1.2	30
17	Fatigue crack orientation in NR and SBR under variable amplitude and multiaxial loading conditions. Journal of Materials Science, 2008, 43, 1783-1794.	3.7	16
18	Comparison of Test Specimens for Characterizing the Dynamic Properties of Rubber. Experimental Mechanics, 2008, 48, 1-8.	2.0	3

WILLIAM MARS

#	Article	IF	CITATIONS
19	Fatigue life analysis and predictions for NR and SBR under variable amplitude and multiaxial loading conditions. International Journal of Fatigue, 2008, 30, 1231-1247.	5.7	81
20	Constitutive Behavior and Temperature Effects in NR and SBR Under Variable Amplitude and Multiaxial Loading Conditions. Journal of Engineering Materials and Technology, Transactions of the ASME, 2008, 130, .	1.4	4
21	The Effect of a Dwell Period on Fatigue Crack Growth Rates in Filled SBR and NR. Rubber Chemistry and Technology, 2007, 80, 838-853.	1.2	32
22	The Correlation of Fatigue Crack Growth Rates in Rubber Subjected to Multiaxial Loading Using Continuum Mechanical Parameters. Rubber Chemistry and Technology, 2007, 80, 169-182.	1.2	15
23	Fatigue Life Prediction for Elastomeric Structures. Rubber Chemistry and Technology, 2007, 80, 481-503.	1.2	33
24	Fatigue crack growth of filled rubber under constant and variable amplitude loading conditions. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30, 640-652.	3.4	47
25	Validation of a Steady-State Transport Analysis for Rolling Treaded Tires. Tire Science and Technology, 2007, 35, 183-208.	0.4	27
26	Multiaxial stress effects on fatigue behavior of filled natural rubber. International Journal of Fatigue, 2006, 28, 521-529.	5.7	43
27	Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading. Journal of Materials Science, 2006, 41, 7324-7332.	3.7	49
28	Analysis of Fatigue Life under Complex Loading: Revisiting Cadwell, Merrill, Sloman, and Yost. Rubber Chemistry and Technology, 2006, 79, 589-601.	1.2	13
29	Multiaxial fatigue of rubber: Part I: equivalence criteria and theoretical aspects. Fatigue and Fracture of Engineering Materials and Structures, 2005, 28, 515-522.	3.4	58
30	Multiaxial fatigue of rubber: Part II: experimental observations and life predictions. Fatigue and Fracture of Engineering Materials and Structures, 2005, 28, 523-538.	3.4	63
31	Factors that Affect the Fatigue Life of Rubber: A Literature Survey. Rubber Chemistry and Technology, 2004, 77, 391-412.	1.2	257
32	Observations of the Constitutive Response and Characterization of Filled Natural Rubber Under Monotonic and Cyclic Multiaxial Stress States. Journal of Engineering Materials and Technology, Transactions of the ASME, 2004, 126, 19-28.	1.4	78
33	A novel specimen for investigating the mechanical behavior of elastomers under multiaxial loading conditions. Experimental Mechanics, 2004, 44, 136-146.	2.0	30
34	Fatigue crack nucleation and growth in filled natural rubber. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 779-789.	3.4	91
35	A Phenomenological Model for the Effect of R Ratio on Fatigue of Strain Crystallizing Rubbers. Rubber Chemistry and Technology, 2003, 76, 1241-1258.	1.2	57
36	Cracking Energy Density as a Predictor of Fatigue Life under Multiaxial Conditions. Rubber Chemistry and Technology, 2002, 75, 1-17.	1.2	107

#	Article	IF	CITATIONS
37	A literature survey on fatigue analysis approaches for rubber. International Journal of Fatigue, 2002, 24, 949-961.	5.7	387
38	Critical Plane Analysis of Rubber Bushing Durability under Road Loads. , 0, , .		17
39	Computing Remaining Fatigue Life Under Incrementally Updated Loading Histories. , 0, , .		9