
Tullio Toccoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/276709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D reconstruction of pentacene structural organization in top-contact OTFTs via resonant soft X-ray reflectivity. Applied Physics Letters, 2018, 112, .	3.3	6
2	Versatile and Scalable Strategy To Grow Sol–Gel Derived 2H-MoS ₂ Thin Films with Superior Electronic Properties: A Memristive Case. ACS Applied Materials & Interfaces, 2018, 10, 34392-34400.	8.0	22
3	Photophysics of Pentacene-Doped Picene Thin Films. Journal of Physical Chemistry C, 2018, 122, 16879-16886.	3.1	10
4	Raman Identification of Polymorphs in Pentacene Films. Crystals, 2016, 6, 41.	2.2	19
5	Spontaneous Wetting Dynamics in Perylene Diimide n-Type Thin Films Deposited at Room Temperature by Supersonic Molecular Beam. Journal of Physical Chemistry C, 2016, 120, 26076-26082.	3.1	9
6	A New Cells ompatible Microfluidic Device for Single Channel Recordings. Electroanalysis, 2014, 26, 1653-1659.	2.9	3
7	Growth dynamics in supersonic molecular beam deposition of pentacene sub-monolayers on SiO ₂ . Chemical Communications, 2014, 50, 7694-7697.	4.1	8
8	Excitonic recombination in superstoichiometric nanocrystalline TiO2 grown by cluster precursors at room temperature. Physical Chemistry Chemical Physics, 2012, 14, 5705.	2.8	6
9	Optimizing Picene Molecular Assembling by Supersonic Molecular Beam Deposition. Journal of Physical Chemistry C, 2012, 116, 24503-24511.	3.1	22
10	Polyelectrolytes-coated gold nanoparticles detection by PEDOT:PSS electrochemical transistors. Organic Electronics, 2012, 13, 1716-1721.	2.6	4
11	Role of kinetic energy of impinging molecules in the α-sexithiophene growth. Thin Solid Films, 2011, 519, 4110-4113.	1.8	6
12	Controlled Polymorphism in Titanyl Phthalocyanine on Mica by Hyperthermal Beams: A Micro-Raman Analysis. Journal of Physical Chemistry C, 2010, 114, 7038-7044.	3.1	21
13	Key role of molecular kinetic energy inÂearlyÂstages ofÂpentacene island growth. Applied Physics A: Materials Science and Processing, 2009, 95, 21-27.	2.3	24
14	Supersonic molecular beams deposition of α-quaterthiophene: Enhanced growth control and devices performances. Organic Electronics, 2009, 10, 521-526.	2.6	11
15	Hybrid titania–zincphthalocyanine nanostructured multilayers with novel gas sensing properties. Sensors and Actuators B: Chemical, 2008, 130, 405-410.	7.8	17
16	OFET for gas sensing based on SuMBE grown pentacene films. Solid-State Electronics, 2008, 52, 417-421.	1.4	8
17	Controlling the Early Stages of Pentacene Growth by Supersonic Molecular Beam Deposition. Physical Review Letters, 2007, 98, 076601.	7.8	75
18	Polymorphism and Phase Control in Titanyl Phthalocyanine Thin Films Grown by Supersonic Molecular Beam Deposition†Journal of Physical Chemistry A, 2007, 111, 12550-12558	2.5	32

Τυιιο Τοςςοιι

#	Article	IF	CITATIONS
19	Hybrid n-TiO2-CuPc gas sensors sensitive to reducing species, synthesized by cluster and supersonic beam deposition. Sensors and Actuators B: Chemical, 2007, 126, 214-220.	7.8	17
20	Comparison of organic thin films deposited by supersonic molecular-beam epitaxy and organic molecular-beam epitaxy: The case of titanyl phthalocyanine. Surface Science, 2006, 600, 2064-2069.	1.9	19
21	Controlling field-effect mobility in pentacene-based transistors by supersonic molecular-beam deposition. Applied Physics Letters, 2006, 88, 132106.	3.3	39
22	SuMBE based organic thin film transistors. Synthetic Metals, 2004, 146, 291-295.	3.9	12
23	Morphological and optical properties of titanyl phthalocyanine films deposited by supersonic molecular beam epitaxy (SuMBE). Surface Science, 2004, 573, 346-358.	1.9	33
24	Titanium dioxide thin films prepared by seeded supersonic beams for gas sensing applications. Sensors and Actuators B: Chemical, 2004, 100, 177-184.	7.8	24
25	Pentacene Thin Film Growth. Chemistry of Materials, 2004, 16, 4497-4508.	6.7	588
26	Innovative aspects in thin film technologies for nanostructured materials in gas sensor devices. Thin Solid Films, 2003, 436, 52-63.	1.8	34
27	Nanostructured TiO2 thin films prepared by supersonic beams and their application in a sensor array for the discrimination of VOC. Sensors and Actuators B: Chemical, 2003, 92, 292-302.	7.8	23
28	Supersonic molecular beam growth of thin films of organic materials: A novel approach to controlling the structure, morphology, and functional properties. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2501-2521.	2.1	45
29	Co-deposition of phthalocyanines and fullerene by SuMBE: characterization and prototype devices. Synthetic Metals, 2003, 138, 3-7.	3.9	7
30	Growth of titanium dioxide films by cluster supersonic beams for VOC sensing applications. IEEE Sensors Journal, 2003, 3, 199-205.	4.7	23
31	Hyperthermal Molecular Beam Deposition of Highly Ordered Organic Thin Films. Physical Review Letters, 2003, 90, 206101.	7.8	129
32	Thin films devices of organic materials by supersonic molecular beams. , 2003, 4829, 781.		0
33	Growth by supersonic molecular-beam epitaxy of oligothiophene films with controlled properties. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 485-495.	0.6	3
34	Optical properties, morphology and structure of high quality oligothiophene films grown by supersonic seeded beams. Synthetic Metals, 2001, 122, 221-223.	3.9	8
35	Molecular materials for optoelectronics by supersonic molecular beam growth: co-deposition of C60 and ZnPc. Synthetic Metals, 2001, 122, 229-231.	3.9	6
36	Preparation of high-quality organic films by deposition and co-deposition via supersonic seeded beams. , 2001, , .		0

#	Article	IF	CITATIONS
37	High-quality $\hat{I}\pm$ -oligothiophene films grown by supersonic seeded beams: optical, morphological, and structural characterization. , 2000, , .		2
38	SiC growth on Si(111) from a C ₆₀ precursor: A new experimental approach based on a hyperthermal supersonic beam. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 635-645.	0.6	5
39	Highly ordered films of quaterthiophene grown by seeded supersonic beams. Applied Physics Letters, 2000, 76, 1845-1847.	3.3	31
40	Supersonic seeded beams of thiophene based oligomers for preparing films of controlled quality. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 2157-2166.	0.6	17