John R Porter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2766985/publications.pdf

Version: 2024-02-01

109321 138484 6,842 59 35 58 h-index citations g-index papers 61 61 61 7646 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temperatures and the growth and development of wheat: a review. European Journal of Agronomy, 1999, 10, 23-36.	4.1	904
2	Crop responses to climatic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 2021-2035.	4.0	764
3	Temperatures and the growth and development of maize and rice: a review. Global Change Biology, 2014, 20, 408-417.	9.5	521
4	Temperature variability and the yield of annual crops. Agriculture, Ecosystems and Environment, 2000, 82, 159-167.	5.3	506
5	A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystems and Environment, 2001, 87, 51-65.	5.3	347
6	Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25, 155-173.	9.5	312
7	Crop–climate models need an overhaul. Nature Climate Change, 2011, 1, 175-177.	18.8	295
8	Modeling Grain Nitrogen Accumulation and Protein Composition to Understand the Sink/Source Regulations of Nitrogen Remobilization for Wheat. Plant Physiology, 2003, 133, 1959-1967.	4.8	291
9	Agroecology, scaling and interdisciplinarity. Agriculture, Ecosystems and Environment, 2003, 100, 39-51.	5.3	252
10	AFRCWHEAT2: A model of the growth and development of wheat incorporating responses to water and nitrogen. European Journal of Agronomy, 1993, 2, 69-82.	4.1	178
11	Rising temperatures are likely to reduce crop yields. Nature, 2005, 436, 174-174.	27.8	174
12	Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. European Journal of Agronomy, 2006, 25, 138-154.	4.1	173
13	The Value of Producing Food, Energy, and Ecosystem Services within an Agro-Ecosystem. Ambio, 2009, 38, 186-193.	5.5	166
14	Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global Change Biology, 2016, 22, 763-781.	9.5	161
15	Ten facts about land systems for sustainability. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	157
16	Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems. Agriculture, Ecosystems and Environment, 2010, 139, 584-594.	5.3	116
17	Global wheat production with 1.5 and 2.0°C above preâ€industrial warming. Global Change Biology, 2019, 25, 1428-1444.	9.5	107
18	Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment, 2010, 136, 199-208.	5.3	103

#	Article	IF	Citations
19	Need for multidisciplinary research towards a second green revolution. Current Opinion in Plant Biology, 2005, 8, 337-341.	7.1	97
20	Agricultural production and greenhouse gas emissions from world regionsâ€"The major trends over 40 years. Global Environmental Change, 2016, 37, 43-55.	7.8	96
21	Temperature, plant development and crop yields. Trends in Plant Science, 1996, 1, 119-124.	8.8	78
22	Chemical stress can increase crop yield. Field Crops Research, 2009, 114, 54-57.	5.1	77
23	Root carbon input in organic and inorganic fertilizer-based systems. Plant and Soil, 2012, 359, 321-333.	3.7	77
24	Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agriculture, Ecosystems and Environment, 2010, 139, 195-205.	5.3	70
25	Climate variability and crop yields in Europe. Nature, 1999, 400, 724-724.	27.8	64
26	Invited review: Intergovernmental Panel on Climate Change, agriculture, and foodâ€"A case of shifting cultivation and history. Global Change Biology, 2019, 25, 2518-2529.	9.5	59
27	A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark. Agricultural and Forest Meteorology, 2014, 187, 1-13.	4.8	53
28	Scaling-up the AFRCWHEAT2 model to assess phenological development for wheat in Europe. Agricultural and Forest Meteorology, 2000, 101, 167-186.	4.8	49
29	Spring Wheat Leaf Appearance and Temperature: Extending the Paradigm?. Annals of Botany, 2003, 91, 697-705.	2.9	48
30	Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant and Soil, 2011, 343, 139-160.	3.7	46
31	Energetic, economic and ecological balances of a combined food and energy system. Biomass and Bioenergy, 1998, 15, 407-416.	5 . 7	44
32	Patent confusion in law on new plant varieties. Nature, 2000, 404, 13-13.	27.8	43
33	Considering agriculture in IPCC assessments. Nature Climate Change, 2017, 7, 680-683.	18.8	43
34	Ozone effects on wheat in relation to CO2: modelling short-term and long-term responses of leaf photosynthesis and leaf duration. Global Change Biology, 2000, 6, 735-750.	9.5	39
35	A European science plan to sustainably increase food security under climate change. Global Change Biology, 2012, 18, 3269-3271.	9 . 5	35
36	Crop Models, CO2, and Climate Change. Science, 2007, 315, 459c-460c.	12.6	34

#	Article	IF	CITATIONS
37	Making science more effective for agriculture. Advances in Agronomy, 2020, , 153-177.	5.2	34
38	Title is missing!. Plant and Soil, 2002, 245, 307-314.	3.7	28
39	Effects of windbreak strips of willow coppice—modelling and field experiment on barley in Denmark. Agriculture, Ecosystems and Environment, 2002, 93, 25-32.	5. 3	23
40	Identity-based estimation of greenhouse gas emissions from crop production: Case study from Denmark. European Journal of Agronomy, 2012, 41, 66-72.	4.1	17
41	Non-Linearity in Climate Change Impact Assessments. Journal of Biogeography, 1995, 22, 597.	3.0	16
42	Food Security: Focus on Agriculture. Science, 2010, 328, 172-173.	12.6	16
43	Food, hunger, health, and climate change. Lancet, The, 2016, 387, 1886-1887.	13.7	16
44	Plant science and the food security agenda. Nature Plants, 2015, 1, 15173.	9.3	13
45	Leaf demography in willow short-rotation coppice. Biomass and Bioenergy, 1993, 5, 325-336.	5.7	12
46	Sensitivity of crop yield and N losses in winter wheat to changes in mean and variability of temperature and precipitation in Denmark using the FASSET model. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 335-351.	0.6	12
47	Choosing crops as energy feedstocks. Nature Biotechnology, 2007, 25, 716-717.	17.5	10
48	Can crop-climate models be accurate and precise? A case study for wheat production in Denmark. Agricultural and Forest Meteorology, 2015, 202, 51-60.	4.8	10
49	Organic movement reveals a shift in the social position of science. Nature, 2001, 412, 677-677.	27.8	9
50	Deconstructing crop processes and models via identities. Plant, Cell and Environment, 2013, 36, 1919-1925.	5.7	7
51	Relationship between C:N/C:O Stoichiometry and Ecosystem Services in Managed Production Systems. PLoS ONE, 2015, 10, e0123869.	2.5	5
52	The Rubisco enzyme and agricultural productivity. Nature, 2010, 463, 876-876.	27.8	4
53	Post-Cold-Storage Conditioning Time Affects Soil Denitrifying Enzyme Activity. Communications in Soil Science and Plant Analysis, 2011, 42, 2160-2167.	1.4	3
54	European Perspectives: An Agronomic Science Plan for Food Security in a Changing Climate. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2012, , 73-84.	0.4	3

JOHN R PORTER

#	Article	IF	CITATIONS
55	Biofuels: Putting Current Practices in Perspective. Science, 2008, 320, 1421-1422.	12.6	2
56	How will growing cities eat?. Nature, 2011, 469, 34-34.	27.8	2
57	From genes to networks to what-works. Nature Plants, 2018, 4, 234-234.	9.3	2
58	Wheat Production Systems and Global Climate Change. , 2007, , 195-209.		2
59	Science in an Age of (Non)Reason. , 2018, , 59-70.		0