
Takahiro Ochiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2766841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
2	Secretory Mechanisms and Intercellular Transfer of MicroRNAs in Living Cells. Journal of Biological Chemistry, 2010, 285, 17442-17452.	3.4	1,657
3	Systemically Injected Exosomes Targeted to EGFR Deliver Antitumor MicroRNA to Breast Cancer Cells. Molecular Therapy, 2013, 21, 185-191.	8.2	1,314
4	Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Science, 2010, 101, 2087-2092.	3.9	1,180
5	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	12.2	1,020
6	Neutral Sphingomyelinase 2 (nSMase2)-dependent Exosomal Transfer of Angiogenic MicroRNAs Regulate Cancer Cell Metastasis. Journal of Biological Chemistry, 2013, 288, 10849-10859.	3.4	629
7	Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling, 2014, 7, ra63.	3.6	558
8	Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nature Communications, 2015, 6, 6716.	12.8	547
9	Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology, 2007, 46, 219-228.	7.3	497
10	Emerging roles of long nonâ€coding <scp>RNA</scp> in cancer. Cancer Science, 2018, 109, 2093-2100.	3.9	489
11	microRNA as a new immune-regulatory agent in breast milk. Silence: A Journal of RNA Regulation, 2010, 1, 7.	8.1	484
12	Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nature Communications, 2014, 5, 3591.	12.8	450
13	Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Scientific Reports, 2013, 3, 1197.	3.3	424
14	Systemic Delivery of Synthetic MicroRNA-16 Inhibits the Growth of Metastatic Prostate Tumors via Downregulation of Multiple Cell-cycle Genes. Molecular Therapy, 2010, 18, 181-187.	8.2	399
15	Drug Resistance Driven by Cancer Stem Cells and Their Niche. International Journal of Molecular Sciences, 2017, 18, 2574.	4.1	376
16	Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12177-12182.	7.1	359
17	The therapeutic potential of mesenchymal stem cellâ€derived extracellular vesicles. Proteomics, 2013, 13, 1637-1653.	2.2	332
18	Comparative marker analysis of extracellular vesicles in different human cancer types. Journal of Extracellular Vesicles, 2013, 2, .	12.2	321

#	Article	IF	CITATIONS
19	Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Research, 2004, 32, e109-e109.	14.5	303
20	IFATS Collection: In Vivo Therapeutic Potential of Human Adipose Tissue Mesenchymal Stem Cells After Transplantation into Mice with Liver Injury. Stem Cells, 2008, 26, 2705-2712.	3.2	277
21	Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Science, 2016, 107, 326-334.	3.9	274
22	miR-22 represses cancer progression by inducing cellular senescence. Journal of Cell Biology, 2011, 193, 409-424.	5.2	272
23	Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science, 2015, 98, 2920-2933.	3.4	269
24	Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Advanced Drug Delivery Reviews, 2013, 65, 383-390.	13.7	267
25	Versatile roles of extracellular vesicles in cancer. Journal of Clinical Investigation, 2016, 126, 1163-1172.	8.2	261
26	The Progression of Liver Fibrosis Is Related with Overexpression of the miR-199 and 200 Families. PLoS ONE, 2011, 6, e16081.	2.5	248
27	New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nature Medicine, 1999, 5, 707-710.	30.7	240
28	MicroRNA-143 Regulates Human Osteosarcoma Metastasis by Regulating Matrix Metalloprotease-13 Expression. Molecular Therapy, 2011, 19, 1123-1130.	8.2	240
29	Rapid hepatic fate specification of adiposeâ€derived stem cells and their therapeutic potential for liver failure. Journal of Gastroenterology and Hepatology (Australia), 2009, 24, 70-77.	2.8	238
30	Competitive Interactions of Cancer Cells and Normal Cells via Secretory MicroRNAs. Journal of Biological Chemistry, 2012, 287, 1397-1405.	3.4	237
31	Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nature Communications, 2017, 8, 14470.	12.8	235
32	Therapeutic potential of RNA interference against cancer. Cancer Science, 2006, 97, 689-696.	3.9	220
33	The Clinical Relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 Network in Chemoresistant Non-small-cell Lung Cancer. Molecular Therapy, 2015, 23, 717-727.	8.2	218
34	Integrated extracellular microRNA profiling for ovarian cancer screening. Nature Communications, 2018, 9, 4319.	12.8	213
35	MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers, 2009, 14, 529-538.	1.9	204
36	The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity. Journal of Clinical Medicine, 2019, 8, 1025.	2.4	203

#	Article	IF	CITATIONS
37	Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2204-2209.	7.1	200
38	Differentiation of embryonic stem cells into hepatocytes: Biological functions and therapeutic application. Hepatology, 2003, 37, 983-993.	7.3	197
39	Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. Journal of Extracellular Vesicles, 2015, 4, 28388.	12.2	187
40	Conversion of Terminally Committed Hepatocytes to Culturable Bipotent Progenitor Cells with Regenerative Capacity. Cell Stem Cell, 2017, 20, 41-55.	11.1	187
41	Atelocollagen for protein and gene delivery. Advanced Drug Delivery Reviews, 2003, 55, 1651-1677.	13.7	178
42	Extracellular vesicle transfer of cancer pathogenic components. Cancer Science, 2016, 107, 385-390.	3.9	175
43	Circulating miRNA panels for specific and early detection in bladder cancer. Cancer Science, 2019, 110, 408-419.	3.9	175
44	Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Science Advances, 2017, 3, e1701133.	10.3	170
45	Biocompatibility of highly purified bovine milkâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2018, 7, 1440132.	12.2	168
46	Disruption of Circulating Extracellular Vesicles as a Novel Therapeutic Strategy against Cancer Metastasis. Molecular Therapy, 2017, 25, 181-191.	8.2	164
47	Extracellular vesicles as biomarkers and therapeutic targets for cancer. American Journal of Physiology - Cell Physiology, 2020, 318, C29-C39.	4.6	162
48	Direct hepatic fate specification from mouse embryonic stem cells. Hepatology, 2005, 41, 836-846.	7.3	157
49	RPN2 gene confers docetaxel resistance in breast cancer. Nature Medicine, 2008, 14, 939-948.	30.7	150
50	Comprehensive miRNA Expression Analysis in Peripheral Blood Can Diagnose Liver Disease. PLoS ONE, 2012, 7, e48366.	2.5	149
51	Extracellular vesicles in lung microenvironment and pathogenesis. Trends in Molecular Medicine, 2015, 21, 533-542.	6.7	149
52	Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12182.	12.2	147
53	Trash or Treasure: extracellular microRNAs and cell-to-cell communication. Frontiers in Genetics, 2013, 4, 173.	2.3	144
54	Exosomal miRNAs from Peritoneum Lavage Fluid as Potential Prognostic Biomarkers of Peritoneal Metastasis in Gastric Cancer. PLoS ONE, 2015, 10, e0130472.	2.5	141

#	Article	IF	CITATIONS
55	Biomaterials for Gene Delivery Atelocollagen-mediated Controlled Release of Molecular Medicines. Current Gene Therapy, 2001, 1, 31-52.	2.0	137
56	The roles of extracellular vesicles in cancer biology: Toward the development of novel cancer biomarkers. Proteomics, 2014, 14, 412-425.	2.2	134
57	Secretory microRNAs as a versatile communication tool. Communicative and Integrative Biology, 2010, 3, 478-481.	1.4	132
58	Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget, 2017, 8, 78598-78613.	1.8	132
59	The role of microRNAs in the regulation of cancer stem cells. Frontiers in Genetics, 2014, 4, 295.	2.3	128
60	Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases. Journal of Clinical Medicine, 2018, 7, 355.	2.4	128
61	Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nature Communications, 2015, 6, 7318.	12.8	126
62	How cancer cells dictate their microenvironment: present roles of extracellular vesicles. Cellular and Molecular Life Sciences, 2017, 74, 697-713.	5.4	126
63	Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: Insights into the pathophysiology of lung diseases. Molecular Aspects of Medicine, 2018, 60, 92-103.	6.4	126
64	The Roles of MicroRNAs in Breast Cancer. Cancers, 2015, 7, 598-616.	3.7	125
65	Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy, 2021, 23, 373-380.	0.7	125
66	miR-148a plays a pivotal role in the liver by promoting the hepatospecific phenotype and suppressing the invasiveness of transformed cells. Hepatology, 2013, 58, 1153-1165.	7.3	119
67	Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Scientific Reports, 2012, 2, 314.	3.3	116
68	Development of mi <scp>RNA</scp> â€based therapeutic approaches for cancer patients. Cancer Science, 2019, 110, 1140-1147.	3.9	101
69	Generation of genetically modified rats from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14223-14228.	7.1	99
70	Therapeutic Effects of MicroRNA-582-5p and -3p on the Inhibition of Bladder Cancer Progression. Molecular Therapy, 2013, 21, 610-619.	8.2	98
71	Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: an emerging player in cancer metastasis. Journal of Biomedical Science, 2019, 26, 7.	7.0	98
72	Adipose tissue-derived stem cells as a regenerative therapy for a mouse steatohepatitis-induced cirrhosis model. Hepatology, 2013, 58, 1133-1142.	7.3	96

#	Article	IF	CITATIONS
73	Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research, 2016, 17, 110.	3.6	94
74	How electromagnetic fields can influence adult stem cells: positive and negative impacts. Stem Cell Research and Therapy, 2016, 7, 54.	5.5	94
75	Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget, 2017, 8, 33375-33392.	1.8	93
76	An integrative genomic analysis revealed the relevance of microRNA and gene expression for drug-resistance in human breast cancer cells. Molecular Cancer, 2011, 10, 135.	19.2	90
77	Circulating microRNAs and extracellular vesicles as potential cancer biomarkers: a systematic review. International Journal of Clinical Oncology, 2017, 22, 413-420.	2.2	90
78	Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair. Stem Cell Research and Therapy, 2015, 6, 212.	5.5	89
79	The role of extracellular vesicle microRNAs in cancer biology. Clinical Chemistry and Laboratory Medicine, 2017, 55, 648-656.	2.3	89
80	Atelocollagen-Based Gene Transfer in Cells Allows High-Throughput Screening of Gene Functions. Biochemical and Biophysical Research Communications, 2001, 289, 1075-1081.	2.1	88
81	Cancer extracellular vesicles contribute to stromal heterogeneity by inducing chemokines in cancer-associated fibroblasts. Oncogene, 2019, 38, 5566-5579.	5.9	87
82	Large-scale Circulating microRNA Profiling for the Liquid Biopsy of Prostate Cancer. Clinical Cancer Research, 2019, 25, 3016-3025.	7.0	87
83	Exploiting the message from cancer: the diagnostic value of extracellular vesicles for clinical applications. Experimental and Molecular Medicine, 2019, 51, 1-9.	7.7	87
84	A novel platform for cancer therapy using extracellular vesicles. Advanced Drug Delivery Reviews, 2015, 95, 50-55.	13.7	86
85	RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy. Molecular Cancer, 2014, 13, 134.	19.2	84
86	Extracellular vesicles as transâ€genomic agents: Emerging roles in disease and evolution. Cancer Science, 2017, 108, 824-830.	3.9	84
87	A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget, 2017, 8, 89811-89823.	1.8	84
88	Inhibition of Stabilin-2 elevates circulating hyaluronic acid levels and prevents tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4263-4268.	7.1	82
89	Extracellular Vesicles and Their Role in Urologic Malignancies. European Urology, 2016, 70, 323-331.	1.9	79
90	RNAi Therapeutic Platforms for Lung Diseases. Pharmaceuticals, 2013, 6, 223-250.	3.8	78

6

#	Article	IF	CITATIONS
91	Stem Cells for Hepatic Regeneration: The Role of Adipose Tissue Derived Mesenchymal Stem Cells. Current Stem Cell Research and Therapy, 2010, 5, 182-189.	1.3	77
92	Intercellular Communication by Extracellular Vesicles and Their MicroRNAs in Asthma. Clinical Therapeutics, 2014, 36, 873-881.	2.5	75
93	Latest advances in extracellular vesicles: from bench to bedside. Science and Technology of Advanced Materials, 2019, 20, 746-757.	6.1	74
94	Human bronchial epithelial cellâ€derived extracellular vesicle therapy for pulmonary fibrosis via inhibition of TGFâ€I²â€WNT crosstalk. Journal of Extracellular Vesicles, 2021, 10, e12124.	12.2	74
95	Time-Dependent Expression Profiles of microRNAs and mRNAs in Rat Milk Whey. PLoS ONE, 2014, 9, e88843.	2.5	73
96	Exosomal tumor-suppressive microRNAs as novel cancer therapy. Advanced Drug Delivery Reviews, 2013, 65, 376-382.	13.7	72
97	Commitment of Annexin A2 in recruitment of microRNAs into extracellular vesicles. FEBS Letters, 2015, 589, 4071-4078.	2.8	72
98	A miRNA-based diagnostic model predicts resectable lung cancer in humans with high accuracy. Communications Biology, 2020, 3, 134.	4.4	72
99	Mesenchymal stem cell-derived extracellular vesicles: a glimmer of hope in treating Alzheimer's disease. International Immunology, 2017, 29, 11-19.	4.0	67
100	Trophic Activity and Phenotype of Adipose Tissue-Derived Mesenchymal Stem Cells as a Background of Their Regenerative Potential. Stem Cells International, 2017, 2017, 1-13.	2.5	67
101	A serum microRNA classifier for the diagnosis of sarcomas of various histological subtypes. Nature Communications, 2019, 10, 1299.	12.8	66
102	Exosomes and extracellular vesicles: Rethinking the essential values in cancer biology. Seminars in Cancer Biology, 2021, 74, 79-91.	9.6	65
103	A comparative analysis of the transcriptome and signal pathways in hepatic differentiation of human adipose mesenchymal stem cells. FEBS Journal, 2008, 275, 1260-1273.	4.7	64
104	Epigenetic reprogramming using 5-azacytidine promotes an anti-cancer response in pancreatic adenocarcinoma cells. Cell Death and Disease, 2018, 9, 468.	6.3	64
105	Establishment and Characterization of an <i>In Vitro</i> Model of Ovarian Cancer Stem-like Cells with an Enhanced Proliferative Capacity. Cancer Research, 2016, 76, 150-160.	0.9	63
106	Extracellular Vesicles from Fibroblasts Induce Epithelial-Cell Senescence in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 623-636.	2.9	63
107	Establishment of Rat Embryonic Stem Cells and Making of Chimera Rats. PLoS ONE, 2008, 3, e2800.	2.5	62
108	Extracellular Vesicles in Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 2016, 17, 1801.	4.1	62

#	Article	IF	CITATIONS
109	Clinical Relevance and Therapeutic Significance of MicroRNA-133a Expression Profiles and Functions in Malignant Osteosarcoma-Initiating Cells. Stem Cells, 2014, 32, 959-973.	3.2	61
110	Commitment of stem cells into functional hepatocytes. Differentiation, 2010, 79, 65-73.	1.9	60
111	Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. Journal of Extracellular Vesicles, 2018, 7, 1473707.	12.2	60
112	A label-free electrical detection of exosomal microRNAs using microelectrode array. Chemical Communications, 2012, 48, 11942.	4.1	58
113	Altered biodistribution of deglycosylated extracellular vesicles through enhanced cellular uptake. Journal of Extracellular Vesicles, 2020, 9, 1713527.	12.2	58
114	Stem cell plasticity: Learning from hepatogenic differentiation strategies. Developmental Dynamics, 2007, 236, 3228-3241.	1.8	57
115	Development of Small RNA Delivery Systems for Lung Cancer Therapy. International Journal of Molecular Sciences, 2015, 16, 5254-5270.	4.1	57
116	Imaging of angiogenesis of human umbilical vein endothelial cells by uptake of exosomes secreted from hepatocellular carcinoma cells. Scientific Reports, 2018, 8, 6765.	3.3	56
117	Development and Validation of an Esophageal Squamous Cell Carcinoma Detection Model by Large-Scale MicroRNA Profiling. JAMA Network Open, 2019, 2, e194573.	5.9	56
118	Effects of adipose-derived mesenchymal cells on ischemia–reperfusion injury in kidney. Clinical and Experimental Nephrology, 2012, 16, 679-689.	1.6	55
119	RNAi Therapeutics and Applications of MicroRNAs in Cancer Treatment. Japanese Journal of Clinical Oncology, 2013, 43, 596-607.	1.3	54
120	The Impact of Extracellular Vesicle-Encapsulated Circulating MicroRNAs in Lung Cancer Research. BioMed Research International, 2014, 2014, 1-8.	1.9	54
121	Regulatory role of resveratrol, a microRNA-controlling compound, in <i>HNRNPA1</i> expression, which is associated with poor prognosis in breast cancer. Oncotarget, 2018, 9, 24718-24730.	1.8	54
122	Expression Level of Urinary MicroRNA-146a-5p Is Increased in Patients With Bladder Cancer and Decreased in Those After Transurethral Resection. Clinical Genitourinary Cancer, 2016, 14, e493-e499.	1.9	53
123	UBL3 modification influences protein sorting to small extracellular vesicles. Nature Communications, 2018, 9, 3936.	12.8	53
124	Involvement of Extracellular Vesicles in Vascular-Related Functions in Cancer Progression and Metastasis. International Journal of Molecular Sciences, 2019, 20, 2584.	4.1	53
125	Highly Sensitive Circulating MicroRNA Panel for Accurate Detection of Hepatocellular Carcinoma in Patients With Liver Disease. Hepatology Communications, 2020, 4, 284-297.	4.3	53
126	A Photon Counting Technique for Quantitatively Evaluating Progression of Peritoneal Tumor Dissemination. Cancer Research, 2006, 66, 7532-7539.	0.9	52

#	Article	IF	CITATIONS
127	FGFâ€4 regulates neural progenitor cell proliferation and neuronal differentiation. FASEB Journal, 2006, 20, 1484-1485.	0.5	52
128	Differentiation Therapy by Epigenetic Reconditioning Exerts Antitumor Effects on Liver Cancer Cells. Molecular Therapy, 2018, 26, 1840-1854.	8.2	51
129	Unraveling the Mystery of Cancer by Secretory microRNA: Horizontal microRNA Transfer between Living Cells. Frontiers in Genetics, 2011, 2, 97.	2.3	50
130	Circulating MicroRNA-92b-3p as a Novel Biomarker for Monitoring of Synovial Sarcoma. Scientific Reports, 2017, 7, 14634.	3.3	50
131	Risk prediction models for dementia constructed by supervised principal component analysis using miRNA expression data. Communications Biology, 2019, 2, 77.	4.4	50
132	Extracellular Vesicles in Cancer Metastasis: Potential as Therapeutic Targets and Materials. International Journal of Molecular Sciences, 2020, 21, 4463.	4.1	50
133	Lipidomic Analysis of Cells and Extracellular Vesicles from High- and Low-Metastatic Triple-Negative Breast Cancer. Metabolites, 2020, 10, 67.	2.9	49
134	Extracellular vesicles in the development of organâ€specific metastasis. Journal of Extracellular Vesicles, 2021, 10, e12125.	12.2	49
135	Adipose tissue derived stromal stem cell therapy in murine <scp>C</scp> on <scp>A</scp> â€derived hepatitis is dependent on myeloidâ€lineage and <scp>CD</scp> 4 ⁺ <scp>T</scp> â€cell suppression. European Journal of Immunology, 2013, 43, 2956-2968.	2.9	48
136	Dark side of the exosome: the role of the exosome in cancer metastasis and targeting the exosome as a strategy for cancer therapy. Future Oncology, 2014, 10, 671-681.	2.4	48
137	Potential Application of Extracellular Vesicles of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Alzheimer's Disease Therapeutics. Methods in Molecular Biology, 2014, 1212, 171-181.	0.9	47
138	miRNA therapy targeting cancer stem cells: a new paradigm for cancer treatment and prevention of tumor recurrence. Therapeutic Delivery, 2015, 6, 323-337.	2.2	47
139	High-level secretion of tissue factor-rich extracellular vesicles from ovarian cancer cells mediated by filamin-A and protease-activated receptors. Thrombosis and Haemostasis, 2016, 115, 299-310.	3.4	47
140	Extracellular vesicles in lung cancer—From bench to bedside. Seminars in Cell and Developmental Biology, 2017, 67, 39-47.	5.0	47
141	Extracellular microRNAs and oxidative stress in liver injury: a systematic mini review. Journal of Clinical Biochemistry and Nutrition, 2018, 63, 6-11.	1.4	46
142	Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Molecular Therapy - Methods and Clinical Development, 2021, 21, 199-208.	4.1	46
143	Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. ELife, 2019, 8, .	6.0	46
144	Phase I clinical study of liver regenerative therapy for cirrhosis by intrahepatic arterial infusion of freshly isolated autologous adipose tissue-derived stromal/stem (regenerative) cell. Regenerative Therapy, 2017, 6, 52-64.	3.0	45

#	Article	IF	CITATIONS
145	Cancer-related microRNAs and their role as tumor suppressors and oncogenes in hepatocellular carcinoma. Histology and Histopathology, 2013, 28, 437-51.	0.7	45
146	A novel platform to enable inhaled naked RNAi medicine for lung cancer. Scientific Reports, 2013, 3, 3325.	3.3	44
147	Ribophorin II regulates breast tumor initiation and metastasis through the functional suppression of GSK3β. Scientific Reports, 2013, 3, 2474.	3.3	44
148	Extracellular Vesicles: New Players in Lung Immunity. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 560-565.	2.9	44
149	Serum MicroRNA-Based Risk Prediction for Stroke. Stroke, 2019, 50, 1510-1518.	2.0	44
150	Small extracellular vesicles derived from interferon-γ pre-conditioned mesenchymal stromal cells effectively treat liver fibrosis. Npj Regenerative Medicine, 2021, 6, 19.	5.2	44
151	Glutathione S-transferase Pi mediates proliferation of androgen-independent prostate cancer cells. Carcinogenesis, 2008, 29, 1134-1138.	2.8	43
152	Interactions between cancer cells and normal cells via miRNAs in extracellular vesicles. Cellular and Molecular Life Sciences, 2015, 72, 1849-1861.	5.4	42
153	The clinical impact of intra―and extracellular miRNAs in ovarian cancer. Cancer Science, 2020, 111, 3435-3444.	3.9	41
154	Serum miRNA–based Prediction of Axillary Lymph Node Metastasis in Breast Cancer. Clinical Cancer Research, 2019, 25, 1817-1827.	7.0	40
155	A paradigm shift for extracellular vesicles as small RNA carriers: from cellular waste elimination to therapeutic applications. Drug Delivery and Translational Research, 2014, 4, 31-37.	5.8	39
156	miR-26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. Science Advances, 2020, 6, eaay3051.	10.3	39
157	Osteoblast-derived vesicles induce a switch from bone-formation to bone-resorption in vivo. Nature Communications, 2022, 13, 1066.	12.8	39
158	A tissue microRNA signature that predicts the prognosis of breast cancer in young women. PLoS ONE, 2017, 12, e0187638.	2.5	38
159	Detection of spatial localization of Hst-1/Fgf-4 gene expression in brain and testis from adult mice. Oncogene, 2000, 19, 3805-3810.	5.9	37
160	Recapitulation ofin vivo gene expression during hepatic differentiation from murine embryonic stem cells. Hepatology, 2005, 42, 558-567.	7.3	37
161	Pleiotropic function of FGFâ€4: Its role in development and stem cells. Developmental Dynamics, 2009, 238, 265-276.	1.8	37
162	Single-Cell Analysis Reveals a Preexisting Drug-Resistant Subpopulation in the Luminal Breast Cancer Subtype. Cancer Research, 2019, 79, 4412-4425.	0.9	37

#	Article	IF	CITATIONS
163	Extracellular Vesicles Are Key Regulators of Tumor Neovasculature. Frontiers in Cell and Developmental Biology, 2020, 8, 611039.	3.7	37
164	MEG3-derived miR-493-5p overcomes the oncogenic feature of IGF2-miR-483 loss of imprinting in hepatic cancer cells. Cell Death and Disease, 2019, 10, 553.	6.3	36
165	Atelocollagen-Mediated Systemic DDS for Nucleic Acid Medicines. Annals of the New York Academy of Sciences, 2006, 1082, 9-17.	3.8	35
166	Functional Analysis of Exosomal MicroRNA in Cell–Cell Communication Research. Methods in Molecular Biology, 2013, 1024, 1-10.	0.9	35
167	Electrokinetic Evaluation of Individual Exosomes by On-Chip Microcapillary Electrophoresis with Laser Dark-Field Microscopy. Japanese Journal of Applied Physics, 2013, 52, 06GK10.	1.5	35
168	Brain metastasis-related microRNAs in patients with advanced breast cancer. PLoS ONE, 2019, 14, e0221538.	2.5	34
169	Potential applications of miRNAs as diagnostic and prognostic markers in liver cancer. Frontiers in Bioscience - Landmark, 2013, 18, 199.	3.0	34
170	Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Scientific Reports, 2016, 6, 31172.	3.3	33
171	Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer's disease created by integrative analysis of multi-omics data. Alzheimer's Research and Therapy, 2020, 12, 145.	6.2	33
172	Generation of functional liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo. Nature Communications, 2021, 12, 3390.	12.8	33
173	Potential of Atelocollagen-Mediated Systemic Antisense Therapeutics for Inflammatory Disease. Human Gene Therapy, 2004, 15, 263-272.	2.7	32
174	Extracellular vesicles: Toward a clinical application in urological cancer treatment. International Journal of Urology, 2018, 25, 533-543.	1.0	32
175	Assessment of the Diagnostic Utility of Serum MicroRNA Classification in Patients With Diffuse Glioma. JAMA Network Open, 2019, 2, e1916953.	5.9	32
176	Extracellular vesicle-encapsulated microRNA-761 enhances pazopanib resistance in synovial sarcoma. Biochemical and Biophysical Research Communications, 2018, 495, 1322-1327.	2.1	31
177	Extracellular vesicles mediate the horizontal transfer of an active LINEâ€₁ retrotransposon. Journal of Extracellular Vesicles, 2019, 8, 1643214.	12.2	31
178	Efficacy of a Novel Class of RNA Interference Therapeutic Agents. PLoS ONE, 2012, 7, e42655.	2.5	31
179	Biological Functions Driven by mRNAs Carried by Extracellular Vesicles in Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 620498.	3.7	30
180	HST-1/FGF-4 gene activation induces spermatogenesis and prevents adriamycin-induced testicular toxicity. Oncogene, 2002, 21, 899-908.	5.9	29

#	Article	IF	CITATIONS
181	Roles of microRNAs in the Hepatitis B Virus Infection and Related Diseases. Viruses, 2013, 5, 2690-2703.	3.3	29
182	The small vesicular culprits: the investigation of extracellular vesicles as new targets for cancer treatment. Clinical and Translational Medicine, 2017, 6, 45.	4.0	29
183	Extracellular vesicles and encapusulated miRNAs as emerging cancer biomarkers for novel liquid biopsy. Japanese Journal of Clinical Oncology, 2018, 48, 869-876.	1.3	29
184	HST-1/FGF-4 protects male germ cells from apoptosis under heat-stress condition. Experimental Cell Research, 2004, 294, 77-85.	2.6	28
185	Maintaining good miRNAs in the body keeps the doctor away?: Perspectives on the relationship between foodâ€derived natural products and microRNAs in relation to exosomes/extracellular vesicles. Molecular Nutrition and Food Research, 2018, 62, 1700080.	3.3	28
186	Drug library screen reveals benzimidazole derivatives as selective cytotoxic agents for KRAS-mutant lung cancer. Cancer Letters, 2019, 451, 11-22.	7.2	28
187	Transcriptomic Dissection of Hepatocyte Heterogeneity: Linking Ploidy, Zonation, and Stem/Progenitor Cell Characteristics. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 161-183.	4.5	28
188	Generation of functional human hepatocytes in vitro: current status and future prospects. Inflammation and Regeneration, 2019, 39, 13.	3.7	27
189	MicroRNAâ€493â€5pâ€mediated repression of the <i>MYCN</i> oncogene inhibits hepatic cancer cell growth and invasion. Cancer Science, 2020, 111, 869-880.	3.9	27
190	Early prediction of COVIDâ€19 severity using extracellular vesicle COPB2. Journal of Extracellular Vesicles, 2021, 10, e12092.	12.2	27
191	Drug delivery application of extracellular vesicles; insight into production, drug loading, targeting, and pharmacokinetics. AIMS Bioengineering, 2017, 4, 73-92.	1.1	27
192	Transplantation of a fetal liver cell-loaded hyaluronic acid sponge onto the mesentery recovers a Wilson's disease model rat. Journal of Biochemistry, 2010, 148, 281-288.	1.7	26
193	Prognostic and therapeutic impact of RPN2-mediated tumor malignancy in non-small-cell lung cancer. Oncotarget, 2015, 6, 3335-3345.	1.8	26
194	Purification of RNA from Milk Whey. Methods in Molecular Biology, 2013, 1024, 191-201.	0.9	25
195	RPN2 Gene Confers Osteosarcoma Cell Malignant Phenotypes and Determines Clinical Prognosis. Molecular Therapy - Nucleic Acids, 2014, 3, e189.	5.1	25
196	Antisense oligodeoxynucleotide against HST-1/FGF-4 suppresses tumorigenicity of an orthotopic model for human germ cell tumor in nude mice. Journal of Gene Medicine, 2003, 5, 951-957.	2.8	24
197	Serum microRNA-based prediction of responsiveness to eribulin in metastatic breast cancer. PLoS ONE, 2019, 14, e0222024.	2.5	24
198	Serum microRNA profile enables preoperative diagnosis of uterine leiomyosarcoma. Cancer Science, 2019, 110, 3718-3726.	3.9	24

#	Article	IF	CITATIONS
199	Adenosine leakage from perforin-burst extracellular vesicles inhibits perforin secretion by cytotoxic T-lymphocytes. PLoS ONE, 2020, 15, e0231430.	2.5	24
200	Molecular cloning and functional analysis of cDNA encoding a rat leukemia inhibitory factor: towards generation of pluripotent rat embryonic stem cells. Oncogene, 1998, 16, 3189-3196.	5.9	23
201	miRNA-1246 in extracellular vesicles secreted from metastatic tumor induces drug resistance in tumor endothelial cells. Scientific Reports, 2021, 11, 13502.	3.3	23
202	HST-1/FGF-4 plays a critical role in crypt cell survival and facilitates epithelial cell restitution and proliferation. Oncogene, 2004, 23, 3681-3688.	5.9	22
203	A Mouse Model of Inducible Liver Injury Caused by Tet-On Regulated Urokinase for Studies of Hepatocyte Transplantation. American Journal of Pathology, 2009, 175, 1975-1983.	3.8	22
204	MicroRNAs in Soft Tissue Sarcomas: Overview of the Accumulating Evidence and Importance as Novel Biomarkers. BioMed Research International, 2014, 2014, 1-15.	1.9	22
205	The expression and clinical significance of ribophorin <scp>II</scp> (<scp>RPN2</scp>) in human breast cancer. Pathology International, 2015, 65, 301-308.	1.3	22
206	A comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression data. BMC Medical Genomics, 2019, 12, 150.	1.5	22
207	Chaperoneâ€mediated autophagy receptor modulates tumor growth and chemoresistance in non–small cell lung cancer. Cancer Science, 2020, 111, 4154-4165.	3.9	22
208	miRNA signaling networks in cancer stem cells. Regenerative Therapy, 2021, 17, 1-7.	3.0	22
209	Intratumor injection of small interfering RNA-targeting human papillomavirus 18 E6 and E7 successfully inhibits the growth of cervical cancer. International Journal of Oncology, 2006, 29, 541.	3.3	21
210	Biliary Epithelial Cells Play an Essential Role in the Reconstruction of Hepatic Tissue with a Functional Bile Ductular Network. Tissue Engineering - Part A, 2013, 19, 2402-2411.	3.1	21
211	The antiviral effects of human microRNA miRâ€302câ€3p against hepatitis B virus infection. Alimentary Pharmacology and Therapeutics, 2019, 49, 1060-1070.	3.7	21
212	Circulating Exosomal miRNA Profiles Predict the Occurrence and Recurrence of Hepatocellular Carcinoma in Patients with Direct-Acting Antiviral-Induced Sustained Viral Response. Biomedicines, 2019, 7, 87.	3.2	20
213	Uncovering temperatureâ€dependent extracellular vesicle secretion in breast cancer. Journal of Extracellular Vesicles, 2020, 10, e12049.	12.2	20
214	Long-Term Maintenance of Liver-Specific Functions in Cultured ES Cell-Derived Hepatocytes with Hyaluronan Sponge. Cell Transplantation, 2005, 14, 629-635.	2.5	19
215	An Insight into the Roles of MicroRNAs and Exosomes in Sarcoma. Cancers, 2019, 11, 428.	3.7	19
216	Cancer Stem Cells in Breast Cancer. Cancers, 2011, 3, 1311-1328.	3.7	18

#	Article	IF	CITATIONS
217	A novel combination of serum microRNAs for the detection of early gastric cancer. Gastric Cancer, 2021, 24, 835-843.	5.3	18
218	Mouse flt-1 Promoter Directs Endothelial-Specific Expression in the Embyroid Body Model of Embryogenesis. Biochemical and Biophysical Research Communications, 2000, 276, 1089-1099.	2.1	17
219	The <i>Sox2</i> promoter-driven CD63-GFP transgenic rat model allows tracking neural stem cell-derived extracellular vesicles. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	17
220	Long nonâ€coding NR2F1â€AS1 is associated with tumor recurrence in estrogen receptorâ€positive breast cancers. Molecular Oncology, 2020, 14, 2271-2287.	4.6	17
221	MiRâ€1285â€5p/ TMEM194A axis affects cell proliferation in breast cancer. Cancer Science, 2020, 111, 395-405.	3.9	17
222	Gene expression profiling of cerebellar development with high-throughput functional analysis. Physiological Genomics, 2005, 22, 8-13.	2.3	16
223	Two distinct knockout approaches highlight a critical role for p53 in rat development. Scientific Reports, 2012, 2, 945.	3.3	16
224	Extracellular Vesicles in Bone Metastasis: Key Players in the Tumor Microenvironment and Promising Therapeutic Targets. International Journal of Molecular Sciences, 2020, 21, 6680.	4.1	16
225	Establishment of Embryonic Stem Cells from Rat Blastocysts. Methods in Molecular Biology, 2010, 597, 169-177.	0.9	15
226	Regenerative Cells for Transplantation in Hepatic Failure. Cell Transplantation, 2012, 21, 387-399.	2.5	15
227	Micromanaging of tumor metastasis by extracellular vesicles. Seminars in Cell and Developmental Biology, 2015, 40, 52-59.	5.0	15
228	Rapid Discrimination of Extracellular Vesicles by Shape Distribution Analysis. Analytical Chemistry, 2021, 93, 7037-7044.	6.5	15
229	Molecular profiling of extracellular vesicles via charge-based capture using oxide nanowire microfluidics. Biosensors and Bioelectronics, 2021, 194, 113589.	10.1	15
230	Induced pluripotent stem cell-derived hepatocytes as an alternative to human adult hepatocytes. Journal of Stem Cells, 2012, 7, 1-17.	1.0	14
231	Gene-manipulated embryonic stem cells for rat transgenesis. Cellular and Molecular Life Sciences, 2011, 68, 1911-1915.	5.4	13
232	Hypoxia efficiently induces differentiation of mouse embryonic stem cells into endodermal and hepatic progenitor cells. Biochemical Engineering Journal, 2013, 74, 95-101.	3.6	13
233	Circulating MicroRNAs in Drug Safety Assessment for Hepatic and Cardiovascular Toxicity: The Latest Biomarker Frontier?. Molecular Diagnosis and Therapy, 2014, 18, 121-126.	3.8	13
234	Identification of serum microRNAs predicting the response of esophageal squamous-cell carcinoma to nivolumab. Japanese Journal of Clinical Oncology, 2019, 50, 114-121.	1.3	13

#	Article	IF	CITATIONS
235	Towards the realization of clinical extracellular vesicle diagnostics: challenges and opportunities. Expert Review of Molecular Diagnostics, 2015, 15, 1555-1566.	3.1	12
236	Longâ€ŧerm maintenance of functional primary human hepatocytes using small molecules. FEBS Letters, 2020, 594, 114-125.	2.8	12
237	Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts. PLoS ONE, 2020, 15, e0234613.	2.5	12
238	Urinary extracellular vesicles: a rising star in bladder cancer management. Translational Andrology and Urology, 2021, 10, 1878-1889.	1.4	12
239	Extracellular microRNA profiling for prognostic prediction in patients with highâ€grade serous ovarian carcinoma. Cancer Science, 2021, 112, 4977-4986.	3.9	12
240	Physiological and pathological relevance of secretory microRNAs and a perspective on their clinical application. Biological Chemistry, 2014, 395, 365-373.	2.5	11
241	A Challenge to Aging Society by microRNA in Extracellular Vesicles: microRNA in Extracellular Vesicles as Promising Biomarkers and Novel Therapeutic Targets in Multiple Myeloma. Journal of Clinical Medicine, 2018, 7, 55.	2.4	11
242	The miRâ€1908/SRM regulatory axis contributes to extracellular vesicle secretion in prostate cancer. Cancer Science, 2020, 111, 3258-3267.	3.9	11
243	Direct evidence that the brain reward system is involved in the control of scratching behaviors induced by acute and chronic itch. Biochemical and Biophysical Research Communications, 2021, 534, 624-631.	2.1	11
244	Comprehensive serum and tissue microRNA profiling in dedifferentiated liposarcoma. Oncology Letters, 2021, 22, 623.	1.8	11
245	Extracellular vesicles in smoking-related lung diseases. Oncotarget, 2015, 6, 43144-43145.	1.8	11
246	Extracellular vesicle-mediated cellular crosstalk in lung repair, remodelling and regeneration. European Respiratory Review, 2022, 31, 210106.	7.1	11
247	Challenges for the Development of Extracellular Vesicle-Based Nucleic Acid Medicines. Cancers, 2021, 13, 6137.	3.7	11
248	Circulating microRNAs: Challenges with their use as liquid biopsy biomarkers. Cancer Biomarkers, 2022, 35, 1-9.	1.7	11
249	Epigenetic Reprogramming of Human Hepatoma Cells: A Low-Cost Option for Drug Metabolism Assessment. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 454-457.e1.	4.5	10
250	Circulating microRNAs: Next-generation Cancer Detection. Keio Journal of Medicine, 2020, 69, 88-96.	1.1	10
251	Circulating Donor Lung-specific Exosome Profiles Enable Noninvasive Monitoring of Acute Rejection in a Rodent Orthotopic Lung Transplantation Model. Transplantation, 2022, 106, 754-766.	1.0	10
252	Identification of microRNAâ€96â€5p as a postoperative, prognostic microRNA predictor in nonviral hepatocellular carcinoma. Hepatology Research, 2022, 52, 93-104.	3.4	10

#	Article	IF	CITATIONS
253	Local and Systemic Delivery of siRNAs for Oligonucleotides Therapy. Methods in Molecular Biology, 2009, 487, 1-10.	0.9	10
254	The Role of Atelocollagen-Based Cell Transfection Array in High- Throughput Screening of Gene Functions and in Drug Discovery. Current Drug Discovery Technologies, 2004, 1, 287-294.	1.2	10
255	MDS cells impair osteolineage differentiation of MSCs via extracellular vesicles to suppress normal hematopoiesis. Cell Reports, 2022, 39, 110805.	6.4	10
256	microRNAs and Hepatitis B. Advances in Experimental Medicine and Biology, 2015, 888, 389-399.	1.6	9
257	Chemically Induced Liver Progenitors (CLiPs): A Novel Cell Source for Hepatocytes and Biliary Epithelial Cells. Methods in Molecular Biology, 2019, 1905, 117-130.	0.9	9
258	Novel hepatotoxicity biomarkers of extracellular vesicle (EV)-associated miRNAs induced by CCl4. Toxicology Reports, 2020, 7, 685-692.	3.3	9
259	Extracellular vesicles containing miR-146a-5p secreted by bone marrow mesenchymal cells activate hepatocytic progenitors in regenerating rat livers. Stem Cell Research and Therapy, 2021, 12, 312.	5.5	9
260	Bioengineering of a CLiPâ€derived tubular biliaryâ€ductâ€like structure for bile transport in vitro. Biotechnology and Bioengineering, 2021, 118, 2572-2584.	3.3	9
261	Possible connection between diet and microRNA in cancer scenario. Seminars in Cancer Biology, 2021, 73, 4-18.	9.6	9
262	"Stem Cells into Liverâ€+ Basic Research and Potential Clinical Applications. , 2006, 585, 3-17.		9
263	SORT1/LAMP2-mediated extracellular vesicle secretion and cell adhesion are linked to lenalidomide resistance in multiple myeloma. Blood Advances, 2022, 6, 2480-2495.	5.2	9
264	Pancreatic Endocrine and Exocrine Cell Ontogeny From Renal Capsule–transplanted Embryonic Stem Cells in Streptozocin-injured Mice. Journal of Histochemistry and Cytochemistry, 2008, 56, 33-44.	2.5	8
265	Towards Circulating-Tumor DNA-Based Precision Medicine. Journal of Clinical Medicine, 2019, 8, 1365.	2.4	8
266	Preliminary evaluation of miR-1307-3p in human serum for detection of 13 types of solid cancer using microRNA chip. Heliyon, 2021, 7, e07919.	3.2	8
267	AMIGO2 contained in cancer cell-derived extracellular vesicles enhances the adhesion of liver endothelial cells to cancer cells. Scientific Reports, 2022, 12, 792.	3.3	8
268	Enhanced effects of secreted soluble factor preserve better pluripotent state of embryonic stem cell culture in a membrane-based compartmentalized micro-bioreactor. Biomedical Microdevices, 2010, 12, 1097-1105.	2.8	7
269	Delivery of small interfering RNA with a synthetic collagen poly(Proâ€Hypâ€Gly) for gene silencing <i>in vitro</i> and <i>in vivo</i> . Development Growth and Differentiation, 2010, 52, 693-699.	1.5	7
270	Differentiation of chemically induced liver progenitor cells to cholangiocytes: Investigation of the optimal conditions. Journal of Bioscience and Bioengineering, 2020, 130, 545-552.	2.2	7

#	Article	IF	CITATIONS
271	Multiple cancer type classification by small RNA expression profiles with plasma samples from multiple facilities. Cancer Science, 2022, 113, 2144-2166.	3.9	7
272	Nuclear microRNAs release paused Pol II via the DDX21-CDK9 complex. Cell Reports, 2022, 39, 110673.	6.4	7
273	No Influence of Exogenous Hyaluronan on the Behavior of Human Cancer Cells or Endothelial Cell Capillary Formation. Journal of Food Science, 2014, 79, T1469-75.	3.1	6
274	Development of Bifunctional Three-Dimensional Cysts from Chemically Induced Liver Progenitors. Stem Cells International, 2019, 2019, 1-13.	2.5	6
275	Re: A Prospective Adaptive Utility Trial to Validate Performance of a Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer in Patients with Prostate-specific Antigen 2–10 ng/ml at Initial Biopsy. European Urology, 2019, 76, 254-255.	1.9	6
276	Synthetic Lethality in Lung Cancer—From the Perspective of Cancer Genomics. Medicines (Basel,) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
277	Generation of Hepatic Organoids with Biliary Structures. Methods in Molecular Biology, 2019, 1905, 175-185.	0.9	6
278	Co-continuous structural effect of size-controlled macro-porous glass membrane on extracellular vesicle collection for the analysis of miRNA. Scientific Reports, 2021, 11, 8672.	3.3	6
279	The In Vivo Evaluation of the Therapeutic Potential of Human Adipose Tissue-Derived Mesenchymal Stem Cells for Acute Liver Disease. Methods in Molecular Biology, 2014, 1213, 57-67.	0.9	6
280	Serum microRNA as liquid biopsy biomarker for the prediction of oncological outcomes in patients with bladder cancer. International Journal of Urology, 2022, 29, 968-976.	1.0	6
281	Tissue Array Substratum Composed of Histological Sections: A New Platform for Orienting Differentiation of Embryonic Stem Cells Towards Hepatic Lineage. Tissue Engineering - Part A, 2008, 14, 267-274.	3.1	5
282	MicroRNA-124a inhibits endoderm lineage commitment by targeting Sox17 and Gata6 in mouse embryonic stem cells. Stem Cells, 2020, 38, 504-515.	3.2	5
283	Peripheral neuropathy from paclitaxel: risk prediction by serum microRNAs. BMJ Supportive and Palliative Care, 2020, , bmjspcare-2019-001900.	1.6	5
284	Novel therapeutic strategies targeting liver cancer stem cells. Chinese Clinical Oncology, 2016, 5, 59-59.	1.2	5
285	Dementia subtype prediction models constructed by penalized regression methods for multiclass classification using serum microRNA expression data. Scientific Reports, 2021, 11, 20947.	3.3	5
286	Generation of Chemically Induced Liver Progenitors (CLiPs) from Rat Adult Hepatocytes. Bio-protocol, 2018, 8, e2689.	0.4	5
287	Extracellular miRNAs for the Management of Barrett's Esophagus and Esophageal Adenocarcinoma: A Systematic Review. Journal of Clinical Medicine, 2021, 10, 117.	2.4	5
288	MicroRNA and liver cancer. , 2020, 3, 385-400.		5

MicroRNA and liver cancer., 2020, 3, 385-400. 288

#	Article	IF	CITATIONS
289	Successful induction of human chemically induced liver progenitors with small molecules from damaged liver. Journal of Gastroenterology, 2022, 57, 441-452.	5.1	5
290	Atelocollagen-mediated drug discovery technology. Expert Opinion on Drug Discovery, 2007, 2, 159-167.	5.0	4
291	InÂvitro reconstitution of breast cancer heterogeneity with multipotent cancer stem cells using small molecules. Biochemical and Biophysical Research Communications, 2017, 482, 750-757.	2.1	4
292	Physiological and pathological functions of prostasomes: From basic research to clinical application. , 2020, , 101-121.		4
293	Cell-type specific tumorigenesis with Ras oncogenes in human lung epithelial cells. Biochemical and Biophysical Research Communications, 2020, 525, 483-490.	2.1	4
294	Machine learning-based multiple cancer detections with circulating miRNA profiles in the blood Journal of Clinical Oncology, 2021, 39, 3037-3037.	1.6	4
295	JAMIR-eQTL: Japanese genome-wide identification of microRNA expression quantitative trait loci across dementia types. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	4
296	Extracellular vesicles from mesenchymal stem cells of dental pulp and adipose tissue display distinct transcriptomic characteristics suggestive of potential therapeutic targets. Journal of Stem Cells and Regenerative Medicine, 2021, 17, 56-60.	2.2	4
297	[28] Antisense approaches to in vitro organ culture. Methods in Enzymology, 2000, 314, 401-411.	1.0	3
298	Circulating microRNAs as Hormones: Intercellular and Inter-organ Conveyors of Epigenetic Information?. Exs, 2015, 106, 255-267.	1.4	3
299	Biological and clinical insights offered by chemically induced liver progenitors (CLiPs). Stem Cell Investigation, 2017, 4, 68-68.	3.0	3
300	Extracellular Vesicles as Novel Nanocarriers for Therapeutic Delivery. , 2019, , 391-407.		3
301	MSC-exosomes in regenerative medicine. , 2020, , 433-465.		3
302	Exosome in disease biology, diagnosis, and therapy. Inflammation and Regeneration, 2014, 34, 233-239.	3.7	3
303	Pazopanib-induced changes in protein expression signatures of extracellular vesicles in synovial sarcoma. Biochemical and Biophysical Research Communications, 2018, 506, 723-730.	2.1	2
304	Selective targeting of KRAS-driven lung tumorigenesis via unresolved ER stress. JCI Insight, 2021, 6, .	5.0	2
305	Epigenetic reprogramming promotes the antiviral action of IFNÎ \pm in HBV-infected cells. Cell Death Discovery, 2021, 7, 130.	4.7	2

Cancer Stem Cells of Sarcoma. , 2013, , 23-78.

#	Article	IF	CITATIONS
307	Donor extracellular vesicle trafficking via the pleural space represents a novel pathway for allorecognition after lung transplantation. American Journal of Transplantation, 2022, 22, 1909-1918.	4.7	2
308	Investigation of umbilical cord serum <scp>miRNAs</scp> associated with childhood obesity: A pilot study from a birth cohort study. Journal of Diabetes Investigation, 2022, 13, 1740-1744.	2.4	2
309	The Biological Role and Clinical Implication of MicroRNAs in Osteosarcoma. , 2017, , .		1
310	Small Interfering RNA-Mediated Silencing of the Ribophorin II Gene: Advances in the Treatment of Malignant Breast Cancer. , 2019, , 27-41.		1
311	Challenges for Better Diagnosis and Management of Pancreatic and Biliary Tract Cancers Focusing on Blood Biomarkers: A Systematic Review. Cancers, 2021, 13, 4220.	3.7	1
312	Three-Dimensional Culture of Fetal Mouse, Rat, and Porcine Hepatocytes. , 2013, , 47-63.		1
313	RNA Interference. , 2011, , 3313-3315.		1
314	Breast Cancer Stem Cell: Translating to the Clinic. , 2012, , 249-257.		1
315	Exosome as a novel nanocarriers for therapeutic delivery. Drug Delivery System, 2020, 35, 35-46.	0.0	1
316	Identification of circulating microRNAs as potential biomarkers for hepatic necroinflammation in patients with autoimmune hepatitis. BMJ Open Gastroenterology, 2022, 9, e000879.	2.7	1
317	Letter from the Guest Editor. Cell Adhesion and Migration, 2008, 2, 184-185.	2.7	0
318	Optical imaging of RNAi-mediated silencing of cancer. , 2008, , .		0
319	MicroRNAs in Bone and Soft Tissue Sarcomas and Their Value as Biomarkers. , 2016, , 613-642.		О
320	Exploration for Cell Sources for Liver Regenerative Medicine: "CLiP―as a Dawn of Cell Transplantation Therapy. , 2018, , 77-101.		0
321	Extracellular vesicles in fibrotic diseases: New applications for fibrosis diagnosis and treatment. , 2020, , 307-323.		0
322	Toward Clinical Application of Exosomes for Cancer Diagnosis. Oleoscience, 2021, 21, 63-68.	0.0	0
323	[OPINION]Evolution of exosome-based DDS technology. Drug Delivery System, 2021, 36, 88-88.	0.0	Ο
324	Tissue Array Substratum Composed of Histological Sections: A New Platform for Orienting Differentiation of Embryonic Stem Cells Towards Hepatic Lineage. Tissue Engineering, 0, , 110306233438005.	4.6	0

		~
IAKAH	IRO	OCHIYA

#	Article	IF	CITATIONS
325	Secretory microRNA as a novel diagnostic marker. Drug Delivery System, 2011, 26, 10-14.	0.0	0
326	The Potential Role of MicroRNA-Based Therapy for Lung Cancer Stem Cells. , 2014, , 83-98.		0
327	MicroRNAs and Oncogenic Human Viruses. , 2014, , 155-182.		0
328	Challenges and Strategies for Pulmonary Delivery of MicroRNA-Based Therapeutics. , 2014, , 413-428.		0
329	RNA Interference. , 2016, , 4092-4095.		0
330	GCT-72. ANALYSIS OF microRNA EXPRESSION PROFILE OF INTRACRANIAL GERM CELL TUMORS: A PROMISING TOOL FOR DIFFERENTIAL DIAGNOSIS. Neuro-Oncology, 2020, 22, iii342-iii343.	1.2	0
331	Development of liquid biopsy for breast cancer. Nihon Nyugan Kenshin Gakkaishi (Journal of Japan) Tj ETQq1 1 0.	784314 r 0.1	gBT /Overloc
332	Development of extracellular vesicle (EV)-based diagnostics and therapeutics. Translational and Regulatory Sciences, 2020, 2, 80-83.	0.2	0
333	Single-cell qPCR Assay with Massively Parallel Microfluidic System. Bio-protocol, 2020, 10, e3563.	0.4	0
334	Transgenic rats for tracking body fluid/tissue-derived extracellular vesicles. Methods in Enzymology, 2020, 645, 231-242.	1.0	0
335	Impaired Osteoblastic Differentiation of MSCs Suppresses Normal Hematopoiesis in MDS. Blood, 2020, 136, 17-18.	1.4	0
336	Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts. , 2020, 15, e0234613.		0
337	Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts. , 2020, 15, e0234613.		0
338	Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts. , 2020, 15, e0234613.		0
339	Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts. , 2020, 15, e0234613.		0
340	Title is missing!. , 2020, 15, e0231430.		0
341	Title is missing!. , 2020, 15, e0231430.		0
342	Title is missing!. , 2020, 15, e0231430.		0

#	Article	IF	CITATIONS
343	Title is missing!. , 2020, 15, e0231430.		0