
Rodrigo S Lacruz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2766649/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Mitochondria modulate ameloblast Ca 2+ signaling. FASEB Journal, 2022, 36, e22169.	0.2	5
2	On the Connections between TRPM Channels and SOCE. Cells, 2022, 11, 1190.	1.8	1
3	Mibefradil alters intracellular calcium concentration by activation of phospholipase C and IP3 receptor function. Molecular Biomedicine, 2021, 2, 12.	1.7	7
4	Calcium Transport in Specialized Dental Epithelia and Its Modulation by Fluoride. Frontiers in Endocrinology, 2021, 12, 730913.	1.5	3
5	STIM1 R304W in mice causes subgingival hair growth and an increased fraction of trabecular bone. Cell Calcium, 2020, 85, 102110.	1.1	8
6	A comprehensive survey of Retzius periodicities in fossil hominins and great apes. Journal of Human Evolution, 2020, 149, 102896.	1.3	5
7	Mitochondrial Function in Enamel Development. Frontiers in Physiology, 2020, 11, 538.	1.3	7
8	Short and long period growth markers of enamel formation distinguish European Pleistocene hominins. Scientific Reports, 2020, 10, 4665.	1.6	19
9	TRPM7 activation potentiates SOCE in enamel cells but requires ORAI. Cell Calcium, 2020, 87, 102187.	1.1	21
10	Fluoride exposure alters Ca ²⁺ signaling and mitochondrial function in enamel cells. Science Signaling, 2020, 13, .	1.6	33
11	Transport Functions of Ectoderm Epithelial Cells Forming Dental Enamel. Physiology in Health and Disease, 2020, , 363-382.	0.2	2
12	Differential regulation of Ca ²⁺ influx by ORAI channels mediates enamel mineralization. Science Signaling, 2019, 12, .	1.6	42
13	The evolutionary history of the human face. Nature Ecology and Evolution, 2019, 3, 726-736.	3.4	57
14	Tissue resident and follicular Treg cell differentiation is regulated by CRAC channels. Nature Communications, 2019, 10, 1183.	5.8	42
15	Role of Dysregulated Cytokine Signaling and Bacterial Triggers in the Pathogenesis ofÂCutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2018, 138, 1116-1125.	0.3	68
16	The biting performance of Homo sapiens and Homo heidelbergensis. Journal of Human Evolution, 2018, 118, 56-71.	1.3	12
17	Evidence That Calcium Entry Into Calcium-Transporting Dental Enamel Cells Is Regulated by Cholecystokinin, Acetylcholine and ATP. Frontiers in Physiology, 2018, 9, 801.	1.3	20
18	Altered Ca2+ signaling in enamelopathies. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1778-1785.	1.9	14

RODRIGO S LACRUZ

#	Article	IF	CITATIONS
19	CRAC channels in dental enamel cells. Cell Calcium, 2018, 75, 14-20.	1.1	20
20	Enamel: Molecular identity of its transepithelial ion transport system. Cell Calcium, 2017, 65, 1-7.	1.1	39
21	Dental Enamel Formation and Implications for Oral Health and Disease. Physiological Reviews, 2017, 97, 939-993.	13.1	282
22	ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nature Communications, 2017, 8, 14714.	5.8	158
23	Ca ²⁺ transport and signalling in enamel cells. Journal of Physiology, 2017, 595, 3015-3039.	1.3	35
24	Store-operated Ca2+ entry controls ameloblast cell function and enamel development. JCI Insight, 2017, 2, e91166.	2.3	46
25	The Swine Plasma Metabolome Chronicles "Many Days" Biological Timing and Functions Linked to Growth. PLoS ONE, 2016, 11, e0145919.	1.1	28
26	The carnivore guild circa 1.98 million years: biodiversity and implications for the palaeoenvironment at Malapa, South Africa. Palaeobiodiversity and Palaeoenvironments, 2016, 96, 611-616.	0.6	6
27	Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function. Journal of Clinical Investigation, 2016, 126, 4303-4318.	3.9	68
28	The first hominin from the early Pleistocene paleocave of Haasgat, South Africa. PeerJ, 2016, 4, e2024.	0.9	20
29	Prevalence of Enamel Markings on Third Molars. Journal of the California Dental Association, 2016, 44, 499-505.	0.0	Ο
30	Distinct growth of the nasomaxillary complex in Au. sediba. Scientific Reports, 2015, 5, 15175.	1.6	10
31	Dental enamel cells express functional SOCE channels. Scientific Reports, 2015, 5, 15803.	1.6	42
32	Dental and Cranial Pathologies in Mice Lacking the <scp>C</scp> l ^{â^'} / <scp>H</scp> +â€Exchanger <scp>C</scp> l <scp>C</scp> â€7. Anatomical Record, 2015, 298, 1502-1508.	0.8	10
33	Diseases caused by mutations in <i>ORAI1</i> and <i>STIM1</i> . Annals of the New York Academy of Sciences, 2015, 1356, 45-79.	1.8	367
34	Ontogeny of the maxilla in Neanderthals and their ancestors. Nature Communications, 2015, 6, 8996.	5.8	27
35	SLC26A Gene Family Participate in pH Regulation during Enamel Maturation. PLoS ONE, 2015, 10, e0144703.	1.1	25
36	Geneâ€expression profile and localization of Na ⁺ /K ⁺ â€ <scp>ATP</scp> ase in rat enamel organ cells. European Journal of Oral Sciences, 2014, 122, 21-26.	0.7	11

RODRIGO S LACRUZ

#	Article	IF	CITATIONS
37	Facial Morphogenesis of the Earliest Europeans. PLoS ONE, 2013, 8, e65199.	1.1	40
38	Adaptor protein complex 2–mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis. Journal of Bone and Mineral Research, 2013, 28, 672-687.	3.1	39
39	New Paradigms on the Transport Functions of Maturation-stage Ameloblasts. Journal of Dental Research, 2013, 92, 122-129.	2.5	64
40	The Circadian Clock Modulates Enamel Development. Journal of Biological Rhythms, 2012, 27, 237-245.	1.4	91
41	Expression of the Sodium/Calcium/Potassium Exchanger, NCKX4, in Ameloblasts. Cells Tissues Organs, 2012, 196, 501-509.	1.3	50
42	Brief Communication: Molar development and crown areas in early <i>Australopithecus</i> . American Journal of Physical Anthropology, 2012, 148, 632-640.	2.1	7
43	Primate enamel evinces long period biological timing and regulation of life history. Journal of Theoretical Biology, 2012, 305, 131-144.	0.8	83
44	Requirements for ion and solute transport, and pH regulation during enamel maturation. Journal of Cellular Physiology, 2012, 227, 1776-1785.	2.0	76
45	Identification of novel candidate genes involved in mineralization of dental enamel by genomeâ€wide transcript profiling. Journal of Cellular Physiology, 2012, 227, 2264-2275.	2.0	94
46	Targeted Overexpression of Amelotin Disrupts the Microstructure of Dental Enamel. PLoS ONE, 2012, 7, e35200.	1.1	59
47	Identification of a pHâ€responsive DNA region upstream of the transcription start site of human <i>NBCe1â€B</i> . European Journal of Oral Sciences, 2011, 119, 136-141.	0.7	10
48	Geneâ€expression analysis of early―and lateâ€maturationâ€stage rat enamel organ. European Journal of Oral Sciences, 2011, 119, 149-157.	0.7	41
49	Epithelialâ€specific knockout of the <i>Rac1</i> gene leads to enamel defects. European Journal of Oral Sciences, 2011, 119, 168-176.	0.7	16
50	Enamel Pathology Resulting from Loss of Function in the Cystic Fibrosis Transmembrane Conductance Regulator in a Porcine Animal Model. Cells Tissues Organs, 2011, 194, 249-254.	1.3	17
51	Chymotrypsin C (Caldecrin) Is Associated with Enamel Development. Journal of Dental Research, 2011, 90, 1228-1233.	2.5	17
52	Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin. PLoS ONE, 2011, 6, e18028.	1.1	9
53	Carnivoran Remains from the Malapa Hominin Site, South Africa. PLoS ONE, 2011, 6, e26940.	1.1	26
54	Regulation of pH During Amelogenesis. Calcified Tissue International, 2010, 86, 91-103.	1.5	106

RODRIGO S LACRUZ

#	Article	IF	CITATIONS
55	Molar crown development in Australopithecus afarensis. Journal of Human Evolution, 2010, 58, 201-206.	1.3	20
56	The Sodium Bicarbonate Cotransporter (NBCe1) Is Essential for Normal Development of Mouse Dentition. Journal of Biological Chemistry, 2010, 285, 24432-24438.	1.6	70
57	A survey of carbonic anhydrase mRNA expression in enamel cells. Biochemical and Biophysical Research Communications, 2010, 393, 883-887.	1.0	31
58	Lamellar Bone is an Incremental Tissue Reconciling Enamel Rhythms, Body Size, and Organismal Life History. Calcified Tissue International, 2009, 84, 388-404.	1.5	143
59	The Ultrastructural and Mechanical Analysis of the Dentition of Mice Lacking the NBCe1 Na+/HCO3― Cotransporter. FASEB Journal, 2009, 23, 800.6.	0.2	1
60	Dental enamel: genes define biomechanics. Journal of the California Dental Association, 2009, 37, 863-8.	0.0	7
61	Megadontia, striae periodicity and patterns of enamel secretion in Plioâ€Pleistocene fossil hominins. Journal of Anatomy, 2008, 213, 148-158.	0.9	65
62	Enamel microstructure of the hominid KB 5223 from Kromdraai, South Africa. American Journal of Physical Anthropology, 2007, 132, 175-182.	2.1	28
63	Appositional enamel growth in molars of South African fossil hominids. Journal of Anatomy, 2006, 209, 13-20.	0.9	37
64	Variation in enamel development of South African fossil hominids. Journal of Human Evolution, 2006, 51, 580-590.	1.3	46
65	Revised age estimates ofAustralopithecus-bearing deposits at Sterkfontein, South Africa. American Journal of Physical Anthropology, 2002, 119, 192-197.	2.1	80