
Paulo J P L Teixeira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2766601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infection by <i>Moniliophthora perniciosa</i> reprograms tomato Micro-Tom physiology, establishes a sink, and increases secondary cell wall synthesis. Journal of Experimental Botany, 2022, 73, 3651-3670.	2.4	2
2	Specific modulation of the root immune system by a community of commensal bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	81
3	Adaptive evolution of Moniliophthora PR-1 proteins towards its pathogenic lifestyle. Bmc Ecology and Evolution, 2021, 21, 84.	0.7	1
4	Moniliophthora perniciosa , the causal agent of witches' broom disease of cacao, interferes with cytokinin metabolism during infection of Micro‶om tomato and promotes symptom development. New Phytologist, 2021, 231, 365-381.	3.5	7
5	A single bacterial genus maintains root growth in a complex microbiome. Nature, 2020, 587, 103-108.	13.7	245
6	The Plant Microbiome: From Ecology to Reductionism and Beyond. Annual Review of Microbiology, 2020, 74, 81-100.	2.9	225
7	MAMP-triggered Medium Alkalinization of Plant Cell Cultures. Bio-protocol, 2020, 10, e3588.	0.2	2
8	Beyond pathogens: microbiota interactions with the plant immune system. Current Opinion in Microbiology, 2019, 49, 7-17.	2.3	171
9	The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology, 2019, 17, e3000534.	2.6	126
10	Suppression of Plant Immunity by Fungal Chitinase-like Effectors. Current Biology, 2018, 28, 3023-3030.e5.	1.8	53
11	Root-exuded coumarin shapes the root microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5629-5631.	3.3	37
12	Ceratocystis cacaofunesta genome analysis reveals a large expansion of extracellular phosphatidylinositol-specific phospholipase-C genes (PI-PLC). BMC Genomics, 2018, 19, 58.	1.2	19
13	Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biology, 2018, 16, e2003962.	2.6	182
14	Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence. Cell Host and Microbe, 2017, 21, 156-168.	5.1	115
15	Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes. Nature Communications, 2017, 8, 15309.	5.8	18
16	Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543, 513-518.	13.7	669
17	A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics, 2017, 49, 1364-1372.	9.4	199
18	Plant pathogenesis–related proteins of the cacao fungal pathogen Moniliophthora perniciosa differ in their lipid-binding specificities. Journal of Biological Chemistry, 2017, 292, 20558-20569.	1.6	18

PAULO J P L TEIXEIRA

#	Article	IF	CITATIONS
19	Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis. Frontiers in Plant Science, 2016, 7, 1255.	1.7	31
20	Effector-Triggered Immune Response in <i>Arabidopsis thaliana</i> Is a Quantitative Trait. Genetics, 2016, 204, 337-353.	1.2	38
21	<i>De Novo</i> Assembly of <i>Candida sojae</i> and Candida boidinii Genomes, Unexplored Xylose-Consuming Yeasts with Potential for Renewable Biochemical Production. Genome Announcements, 2016, 4, .	0.8	8
22	Genomics, Transcriptomics, and Beyond: The Fifteen Years of Cacao's Witches' Broom Disease Genome Project. , 2016, , 179-210.		3
23	Genome-Wide Assessment of Efficiency and Specificity in CRISPR/Cas9 Mediated Multiple Site Targeting in Arabidopsis. PLoS ONE, 2016, 11, e0162169.	1.1	178
24	Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production. Microbial Cell Factories, 2015, 14, 13.	1.9	51
25	Genomic analyses and expression evaluation of thaumatin-like gene family in the cacao fungal pathogen Moniliophthora perniciosa. Biochemical and Biophysical Research Communications, 2015, 466, 629-636.	1.0	15
26	Time for Chocolate: Current Understanding and New Perspectives on Cacao Witches' Broom Disease Research. PLoS Pathogens, 2015, 11, e1005130.	2.1	31
27	Flavonoid supplementation affects the expression of genes involved in cell wall formation and lignification metabolism and increases sugar content and saccharification in the fast-growing eucalyptus hybrid E. urophylla x E. grandis. BMC Plant Biology, 2014, 14, 301.	1.6	8
28	Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC Plant Biology, 2014, 14, 256.	1.6	41
29	High-Resolution Transcript Profiling of the Atypical Biotrophic Interaction between <i>Theobroma cacao</i> and the Fungal Pathogen <i>Moniliophthora perniciosa</i> Â Â Â. Plant Cell, 2014, 26, 4245-4269.	3.1	99
30	Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases. BMC Genomics, 2014, 15, 164.	1.2	107
31	Xylem transcription profiles indicate potential metabolic responses for economically relevant characteristics of Eucalyptusspecies. BMC Genomics, 2013, 14, 201.	1.2	28
32	Global analyses of Ceratocystis cacaofunesta mitochondria: from genome to proteome. BMC Genomics, 2013, 14, 91.	1.2	17
33	Novel receptorâ€like kinases in cacao contain <scp>PR</scp> â€1 extracellular domains. Molecular Plant Pathology, 2013, 14, 602-609.	2.0	12
34	Functional Diversification of Cerato-Platanins in <i>Moniliophthora perniciosa</i> as Seen by Differential Expression and Protein Function Specialization. Molecular Plant-Microbe Interactions, 2013, 26, 1281-1293.	1.4	58
35	A potential role for an extracellular methanol oxidase secreted by Moniliophthora perniciosa in Witches' broom disease in cacao. Fungal Genetics and Biology, 2012, 49, 922-932.	0.9	17
36	The hemibiotrophic cacao pathogen <i>Moniliophthora perniciosa</i> depends on a mitochondrial alternative oxidase for biotrophic development. New Phytologist, 2012, 194, 1025-1034.	3.5	45

#	Article	IF	CITATIONS
37	The genome sequence of Propionibacterium acidipropionici provides insights into its biotechnological and industrial potential. BMC Genomics, 2012, 13, 562.	1.2	74
38	The Fungal Pathogen Moniliophthora perniciosa Has Genes Similar to Plant PR-1 That Are Highly Expressed during Its Interaction with Cacao. PLoS ONE, 2012, 7, e45929.	1.1	36
39	The Crystal Structure of Necrosis- and Ethylene-Inducing Protein 2 from the Causal Agent of Cacao's Witches' Broom Disease Reveals Key Elements for Its Activity. Biochemistry, 2011, 50, 9901-9910.	1.2	31