Brad Manor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2766480/publications.pdf

Version: 2024-02-01

	201674	206112
2,746	27	48
citations	h-index	g-index
91	91	3744
docs citations	times ranked	citing authors
	2,746 citations 91 docs citations	2,746 27 citations h-index 91 91

#	Article	IF	CITATIONS
1	Virtual frailty assessment for older adults with hematologic malignancies. Blood Advances, 2022, 6, 5360-5363.	5.2	5
2	Chronic Musculoskeletal Pain and Foot Reaction Time in Older Adults. Journal of Pain, 2021, 22, 76-85.	1.4	16
3	Dopaminergic therapy and prefrontal activation during walking in individuals with Parkinson's disease: does the levodopa overdose hypothesis extend to gait?. Journal of Neurology, 2021, 268, 658-668.	3.6	15
4	A Smartphone App-Based Application Enabling Remote Assessments of Standing Balance During the COVID-19 Pandemic and Beyond. IEEE Internet of Things Journal, 2021, 8, 15818-15828.	8.7	2
5	Simple Smartphone-Based Assessment of Gait Characteristics in Parkinson Disease: Validation Study. JMIR MHealth and UHealth, 2021, 9, e25451.	3.7	27
6	Objective performance tests of cognition and physical function as part of a virtual geriatric assessment. Journal of Geriatric Oncology, 2021, 12, 1256-1258.	1.0	2
7	A novel smartphone App-based assessment of standing postural control: Demonstration of reliability and sensitivity to aging and task constraints. , 2021, , .		2
8	Lower complexity and higher variability in beatâ€toâ€beat systolic blood pressure are associated with elevated longâ€term risk of dementia: The Rotterdam Study. Alzheimer's and Dementia, 2021, 17, 1134-1144.	0.8	13
9	Targeted <scp>tDCS</scp> Mitigates Dualâ€Task Costs to Gait and Balance in Older Adults. Annals of Neurology, 2021, 90, 428-439.	5.3	21
10	Multitarget Transcranial Electrical Stimulation for Freezing of Gait: A Randomized Controlled Trial. Movement Disorders, 2021, 36, 2693-2698.	3.9	18
11	Different effects of essential tremor and Parkinsonian tremor on multiscale dynamics of hand tremor. Clinical Neurophysiology, 2021, 132, 2282-2289.	1.5	9
12	Tai Chi training's effect on lower extremity muscle co-contraction during single- and dual-task gait: Cross-sectional and randomized trial studies. PLoS ONE, 2021, 16, e0242963.	2.5	10
13	Examining Different Types of Sleep Among Custodial Grandparents During COVID-19. Innovation in Aging, 2021, 5, 1032-1033.	0.1	0
14	Six-Month Lower-Leg Sensory Stimulation Augments Neural Network Connectivity Associated With Improved Gait. Innovation in Aging, 2021, 5, 952-953.	0.1	1
15	Effects of Age on Dual Task Walking Performance as Measured Using a Smartphone Application in Middle-Aged Adults. Innovation in Aging, 2021, 5, 166-167.	0.1	1
16	The Cortical Dynamics of Dual-Task Standing in Older Adults. Innovation in Aging, 2021, 5, 72-72.	0.1	0
17	Gait Speed Maintenance Is Associated With Sensorimotor and Frontoparietal Network Connectivity Among Older Adults. Innovation in Aging, 2021, 5, 542-542.	0.1	0
18	Feasibility of combining noninvasive brain stimulation and personalized counseling to increase physical activity. Innovation in Aging, 2021, 5, 1034-1034.	0.1	1

#	Article	IF	CITATIONS
19	Objective Sleep Quality and the Underlying Functional Neural Correlates Among Older Adults With Probable MCI. Innovation in Aging, 2021, 5, 376-377.	0.1	O
20	In the Eyes of Those Who Were Randomized: Perceptions of Disadvantaged Older Adults in a Tai Chi Trial. Gerontologist, The, 2020, 60, 672-682.	3.9	10
21	Diminished Locomotor Control Is Associated With Reduced Neurovascular Coupling in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1516-1522.	3.6	8
22	Selfâ€Reported Head Trauma Predicts Poor Dual Task Gait in Retired National Football League Players. Annals of Neurology, 2020, 87, 75-83.	5. 3	7
23	Chronic Pain Characteristics and Gait in Older Adults: The MOBILIZE Boston Study II. Archives of Physical Medicine and Rehabilitation, 2020, 101, 418-425.	0.9	27
24	The Effects of a Wearable Sensory Prosthesis on Gait and Balance Function After 10 Weeks of Use in Persons With Peripheral Neuropathy and High Fall Risk – The walk2Wellness Trial. Frontiers in Aging Neuroscience, 2020, 12, 592751.	3.4	12
25	Using Wearable Sensors and Machine Learning to Automatically Detect Freezing of Gait during a FOG-Provoking Test. Sensors, 2020, 20, 4474.	3.8	30
26	The Effects of Transcranial Direct Current Stimulation (tDCS) on Balance Control in Older Adults: A Systematic Review and Meta-Analysis. Frontiers in Aging Neuroscience, 2020, 12, 275.	3.4	15
27	Decreased complexity and increased variability in systolic blood pressure are associated with elevated longâ€term risk of dementia: The Rotterdam Study. Alzheimer's and Dementia, 2020, 16, e041587.	0.8	2
28	Participation in cognitive activities is associated with foot reaction time and gait speed in older adults. Aging Clinical and Experimental Research, 2020, , 1.	2.9	5
29	Advantages of timing the duration of a freezing of gait-provoking test in individuals with Parkinson's disease. Journal of Neurology, 2020, 267, 2582-2588.	3.6	8
30	The functional implications and modifiability of resting-state brain network complexity in older adults. Neuroscience Letters, 2020, 720, 134775.	2.1	4
31	Prenatal Yoga for Back Pain, Balance, and Maternal Wellness: A Randomized, Controlled Pilot Study. Global Advances in Health and Medicine, 2019, 8, 216495611987098.	1.6	18
32	A Cluster Randomized Trial of Tai Chi vs Health Education in Subsidized Housing: The Mlâ€WiSH Study. Journal of the American Geriatrics Society, 2019, 67, 1812-1819.	2.6	21
33	Complexity-Based Measures of Heart Rate Dynamics in Older Adults Following Long- and Short-Term Tai Chi Training: Cross-sectional and Randomized Trial Studies. Scientific Reports, 2019, 9, 7500.	3.3	14
34	Repetitive Transcranial Magnetic Stimulation in Spinocerebellar Ataxia: A Pilot Randomized Controlled Trial. Frontiers in Neurology, 2019, 10, 73.	2.4	42
35	TARGETED TRANSCRANIAL DIRECT CURRENT STIMULATION IMPROVES DUAL-TASK WALKING PERFORMANCE IN OLDER ADULTS. Innovation in Aging, 2019, 3, S794-S794.	0.1	O
36	AGING DIMINISHES THE DIRECT ASSOCIATION BETWEEN BRAIN ACTIVATION AND POSTURAL CONTROL DURING THE N-BACK TASK. Innovation in Aging, 2019, 3, S946-S946.	0.1	0

#	Article	IF	Citations
37	NOVEL REMOTE ASSESSMENT OF THE STANDING POSTURAL CONTROL IN YOUNGER AND OLDER ADULTS USING SMARTPHONE APPLICATION. Innovation in Aging, 2019, 3, S334-S335.	0.1	1
38	Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease. Movement Disorders, 2018, 33, 642-646.	3.9	105
39	Transcranial direct current stimulation enhances foot sole somatosensation when standing in older adults. Experimental Brain Research, 2018, 236, 795-802.	1.5	22
40	The pace and prognosis of peripheral sensory loss in advanced age: association with gait speed and falls. BMC Geriatrics, 2018, 18, 274.	2.7	19
41	Reply to "Anodal tDCS Over Prefrontal Cortex Improves Dualâ€Task Walking in Patients With Freezingâ€. Movement Disorders, 2018, 33, 1973-1974.	3.9	3
42	Effects of Multi-Session Repetitive Transcranial Magnetic Stimulation on Motor Control and Spontaneous Brain Activity in Multiple System Atrophy: A Pilot Study. Frontiers in Behavioral Neuroscience, 2018, 12, 90.	2.0	13
43	Transcranial Direct Current Stimulation May Improve Cognitive-Motor Function in Functionally Limited Older Adults. Neurorehabilitation and Neural Repair, 2018, 32, 788-798.	2.9	55
44	Smartphone App–Based Assessment of Gait During Normal and Dual-Task Walking: Demonstration of Validity and Reliability. JMIR MHealth and UHealth, 2018, 6, e36.	3.7	73
45	Functional implications of muscle co-contraction during gait in advanced age. Gait and Posture, 2017, 53, 110-114.	1.4	37
46	Gait Speed and Gait Variability Are Associated with Different Functional Brain Networks. Frontiers in Aging Neuroscience, 2017, 9, 390.	3.4	77
47	Can Tai Chi training impact fractal stride time dynamics, an index of gait health, in older adults? Cross-sectional and randomized trial studies. PLoS ONE, 2017, 12, e0186212.	2.5	20
48	Gait coordination impairment is associated with mobility in older adults. Experimental Gerontology, 2016, 80, 12-16.	2.8	10
49	Quantitative microstructural deficits in chronic phase of stroke with small volume infarcts: A diffusion tensor 3-D tractographic analysis. Magnetic Resonance Imaging, 2016, 34, 662-667.	1.8	6
50	Tai Chi training reduced coupling between respiration and postural control. Neuroscience Letters, 2016, 610, 60-65.	2.1	14
51	Reduction of Dual-task Costs by Noninvasive Modulation of Prefrontal Activity in Healthy Elders. Journal of Cognitive Neuroscience, 2016, 28, 275-281.	2.3	76
52	Impact of Short- and Long-term Tai Chi Mind-Body Exercise Training on Cognitive Function in Healthy Adults: Results from a Hybrid Observational Study and Randomized Trial. Global Advances in Health and Medicine, 2015, 4, 38-48.	1.6	28
53	Direct current stimulation over the human sensorimotor cortex modulates the brain's hemodynamic response to tactile stimulation. European Journal of Neuroscience, 2015, 42, 1933-1940.	2.6	24
54	Tai Chi Training may Reduce Dual Task Gait Variability, a Potential Mediator of Fall Risk, in Healthy Older Adults: Cross-Sectional and Randomized Trial Studies. Frontiers in Human Neuroscience, 2015, 9, 332.	2.0	42

#	Article	IF	Citations
55	H-Index Is Important for Postural Control for People with Impaired Foot Sole Sensation. PLoS ONE, 2015, 10, e0121847.	2.5	13
56	Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults. Experimental Brain Research, 2015, 233, 2401-2409.	1.5	53
57	A Shoe Insole Delivering Subsensory Vibratory Noise Improves Balance and Gait in Healthy Elderly People. Archives of Physical Medicine and Rehabilitation, 2015, 96, 432-439.	0.9	110
58	Dementia alters standing postural adaptation during a visual search task in older adult men. Neuroscience Letters, 2015, 593, 101-106.	2.1	10
59	Patterns, Predictors, and Outcomes of Falls Trajectories in Older Adults: The MOBILIZE Boston Study with 5 Years of Follow-Up. PLoS ONE, 2014, 9, e106363.	2.5	36
60	Slow gait speed ââ,¬â€œ an indicator of lower cerebral vasoreactivity in type 2 diabetes mellitus. Frontiers in Aging Neuroscience, 2014, 6, 135.	3.4	15
61	Functional Benefits of Tai Chi Training in Senior Housing Facilities. Journal of the American Geriatrics Society, 2014, 62, 1484-1489.	2.6	48
62	Transcranial direct current stimulation reduces the cost of performing a cognitive task on gait and postural control. European Journal of Neuroscience, 2014, 39, 1343-1348.	2.6	92
63	Do Complexity-Based Measures of Sway Inform Long- and Short-Term Effects of Tai Chi Training on Balance in Healthy Adults?. Journal of Alternative and Complementary Medicine, 2014, 20, A25-A25.	2.1	1
64	Complexity-Based Measures Inform Effects of Tai Chi Training on Standing Postural Control: Cross-Sectional and Randomized Trial Studies. PLoS ONE, 2014, 9, e114731.	2.5	58
65	Novel MRIâ€compatible tactile stimulator for cortical mapping of foot sole pressure stimuli with fMRI. Magnetic Resonance in Medicine, 2013, 69, 1194-1199.	3.0	20
66	Complexity-based measures inform tai chi's impact on standing postural control in older adults with peripheral neuropathy. BMC Complementary and Alternative Medicine, 2013, 13, 87.	3.7	39
67	Cerebellar TMS in Treatment of a Patient with Cerebellar Ataxia: Evidence from Clinical, Biomechanics and Neurophysiological Assessments. Cerebellum, 2013, 12, 707-712.	2.5	43
68	Effects of an Exercise Program on Physiological Functions in Postmenopausal Women with Metabolic Syndrome. International Journal of Gerontology, 2013, 7, 231-235.	0.6	7
69	Physiologic complexity and aging: Implications for physical function and rehabilitation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 45, 287-293.	4.8	131
70	Advanced BrainAGE in older adults with type 2 diabetes mellitus. Frontiers in Aging Neuroscience, 2013, 5, 90.	3.4	171
71	The Complexity of Standing Postural Control in Older Adults: A Modified Detrended Fluctuation Analysis Based upon the Empirical Mode Decomposition Algorithm. PLoS ONE, 2013, 8, e62585.	2.5	26
72	The Relationship Between Brain Volume and Walking Outcomes in Older Adults With and Without Diabetic Peripheral Neuropathy. Diabetes Care, 2012, 35, 1907-1912.	8.6	49

#	Article	IF	CITATIONS
73	ldiopathic peripheral neuropathy increases fall risk in a populationâ€based cohort study of older adults. Journal of Foot and Ankle Research, 2012, 5, .	1.9	7
74	The Nonlinear Relationship Between Gait Speed and Falls: The Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly of Boston Study. Journal of the American Geriatrics Society, 2011, 59, 1069-1073.	2.6	218
75	Analysis of EMG and Acceleration Signals for Quantifying the Effects of Deep Brain Stimulation in Parkinson's Disease. IEEE Transactions on Biomedical Engineering, 2011, 58, 2545-2553.	4.2	43
76	Adhesion Molecules, Altered Vasoreactivity, and Brain Atrophy in Type 2 Diabetes. Diabetes Care, 2011, 34, 2438-2441.	8.6	69
77	Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. Journal of Applied Physiology, 2010, 109, 1786-1791.	2.5	235
78	Long Term Tai Chi Exercise Improves Physical Performance Among People with Peripheral Neuropathy. The American Journal of Chinese Medicine, 2010, 38, 449-459.	3.8	57
79	Characteristics of functional gait among people with and without peripheral neuropathy. Gait and Posture, 2009, 30, 253-256.	1.4	47
80	Differential effects of plantar desensitization on locomotion dynamics. Journal of Electromyography and Kinesiology, 2009, 19, e320-e328.	1.7	14
81	Faster walking speeds increase local instability among people with peripheral neuropathy. Journal of Biomechanics, 2008, 41, 2787-2792.	2.1	31
82	The reliability of physical performance measures in peripheral neuropathy. Gait and Posture, 2008, 28, 343-346.	1.4	24
83	Stance and sensory feedback influence on postural dynamics. Neuroscience Letters, 2007, 423, 104-108.	2.1	40
84	THE EFFECTS OF PERIPHERAL NEUROPATHY ON PHYSICAL FUNCTION. Journal of Biomechanics, 2007, 40, S289.	2.1	1
85	Validity and Reliability of Measurements of Elbow Flexion Strength Obtained from Older Adults Using Elastic Bands. Journal of Geriatric Physical Therapy, 2006, 29, 16-19.	1.1	15
86	Network-Based Transcranial Direct Current Stimulation May Modulate Gait Variability in Young Healthy Adults. Frontiers in Human Neuroscience, 0, 16, .	2.0	0