
Kalina Peneva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/276639/publications.pdf Version: 2024-02-01

KALINA DENEVA

#	Article	IF	CITATIONS
1	The Rylene Colorant Family—Tailored Nanoemitters for Photonics Research and Applications. Angewandte Chemie - International Edition, 2010, 49, 9068-9093.	7.2	565
2	Waterâ€Soluble Monofunctional Perylene and Terrylene Dyes: Powerful Labels for Singleâ€Enzyme Tracking. Angewandte Chemie - International Edition, 2008, 47, 3372-3375.	7.2	112
3	Exploiting the Nitrilotriacetic Acid Moiety for Biolabeling with Ultrastable Perylene Dyes. Journal of the American Chemical Society, 2008, 130, 5398-5399.	6.6	100
4	Ultra-sensitive detection of malathion using quantum dots-polymer based fluorescence aptasensor. Biosensors and Bioelectronics, 2018, 104, 45-49.	5.3	81
5	Diffusion in Polymer Solutions Studied by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 3355-3359.	1.2	77
6	Electronic Transport Properties of Ensembles of Peryleneâ€&ubstituted Polyâ€isocyanopeptide Arrays. Advanced Functional Materials, 2008, 18, 3947-3955.	7.8	70
7	Water-Soluble NIR-Absorbing Rylene Chromophores for Selective Staining of Cellular Organelles. Journal of the American Chemical Society, 2016, 138, 2881-2884.	6.6	66
8	"Helter‣kelterâ€Like―Perylene Polyisocyanopeptides. Chemistry - A European Journal, 2009, 15, 2536-254	¥71.7	64
9	Linking Phospholipase Mobility to Activity by Singleâ€Molecule Wideâ€Field Microscopy. ChemPhysChem, 2009, 10, 151-161.	1.0	61
10	Influence of Lipid Heterogeneity and Phase Behavior on Phospholipase A2 Action at the Single Molecule Level. Biophysical Journal, 2010, 98, 1873-1882.	0.2	48
11	Influence of ligands in metal nanoparticle electrophoresis for the fabrication of biofunctional coatings. Applied Surface Science, 2015, 348, 92-99.	3.1	45
12	Photophysics of New Waterâ€Soluble Terrylenediimide Derivatives and Applications in Biology. ChemPhysChem, 2009, 10, 180-190.	1.0	44
13	[FeFe]-Hydrogenase H-cluster mimics mediated by naphthalene monoimide derivatives of peri-substituted dichalcogenides. Dalton Transactions, 2017, 46, 11180-11191.	1.6	43
14	Octreotide-Mediated Tumor-Targeted Drug Delivery via a Cleavable Doxorubicin–Peptide Conjugate. Molecular Pharmaceutics, 2015, 12, 4290-4300.	2.3	39
15	Novel cleavable cell-penetrating peptide-drug conjugates: synthesis and characterization. Journal of Peptide Science, 2014, 20, 323-333.	0.8	36
16	Toward a Tunable Synthetic [FeFe]-Hydrogenase H-Cluster Mimic Mediated by Perylene Monoimide Model Complexes: Insight into Molecular Structures and Electrochemical Characteristics. Organometallics, 2018, 37, 3278-3285.	1.1	35
17	Chemical tags for site-specific fluorescent labeling of biomolecules. Amino Acids, 2016, 48, 1357-1372.	1.2	33
18	Overcoming drug resistance by cell-penetrating peptide-mediated delivery of a doxorubicin dimer with high DNA-binding affinity. European Journal of Medicinal Chemistry, 2017, 130, 336-345.	2.6	31

Kalina Peneva

#	Article	IF	CITATIONS
19	Tuning Singleâ€Molecule Dynamics in Functionalized Mesoporous Silica. Chemistry - A European Journal, 2009, 15, 1661-1672.	1.7	29
20	SAP(E) – A cell-penetrating polyproline helix at lipid interfaces. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2028-2034.	1.4	29
21	Energy Transfer in Molecular Layer-by-Layer Films of Water-Soluble Perylene Diimides. Langmuir, 2007, 23, 4623-4628.	1.6	27
22	Particle-Based Optical Sensing of Intracellular Ions at the Example of Calcium - What Are the Experimental Pitfalls?. Small, 2015, 11, 896-904.	5.2	27
23	The Guanidinium Group as a Key Part of Waterâ€Soluble Polymer Carriers for siRNA Complexation and Protection against Degradation. Macromolecular Rapid Communications, 2014, 35, 1191-1197.	2.0	25
24	Evaluation of the Cytotoxic and Pro-Apoptotic Activities of Eu(III) Complexes with Appended DNA Intercalators in a Panel of Human Malignant Cell Lines. Medicinal Chemistry, 2006, 2, 439-445.	0.7	22
25	Molecular Structure and Pronounced Conformational Flexibility of Doxorubicin in Free and Conjugated State within a Drug–Peptide Compound. Journal of Physical Chemistry B, 2015, 119, 3001-3013.	1.2	20
26	Biocompatible Polylactide-block-Polypeptide-block-Polylactide Nanocarrier. Biomacromolecules, 2013, 14, 1572-1577.	2.6	18
27	New Techniques to Assess In Vitro Release of siRNA from Nanoscale Polyplexes. Pharmaceutical Research, 2015, 32, 1957-1974.	1.7	18
28	Weak Polyampholytes at the Interface of Magnetic Nanocarriers: A Facile Catch-and-Release Platform for Dyes. Langmuir, 2020, 36, 6095-6105.	1.6	17
29	Functionalization of Cationic Polymers for Drug Delivery Applications. RSC Polymer Chemistry Series, 2014, , 1-29.	0.1	16
30	1,7,9,10â€īetrasubstituted PMIs Accessible through Decarboxylative Bromination: Synthesis, Characterization, Photophysical Studies, and Hydrogen Evolution Catalysis. Chemistry - A European Journal, 2021, 27, 4081-4088.	1.7	16
31	Photophysics of Water Soluble Perylene Diimides in Surfactant Solutions. Journal of Physical Chemistry A, 2007, 111, 10609-10614.	1.1	14
32	Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy. Physical Review E, 2013, 87, 012403.	0.8	14
33	Cell-penetrating peptides for nanomedicine – how to choose the right peptide. BioNanoMaterials, 2015, 16, .	1.4	13
34	The influence of gradient and statistical arrangements of guanidinium or primary amine groups in poly(methacrylate) copolymers on their DNA binding affinity. Journal of Materials Chemistry B, 2019, 7, 5920-5929.	2.9	11
35	Bottom-up design of model network elastomers and hydrogels from precise star polymers. Polymer Chemistry, 2019, 10, 3740-3750.	1.9	11
36	Incorporation of Indole Significantly Improves the Transfection Efficiency of Guanidiniumâ€Containing Poly(Methacrylamide)s. Macromolecular Rapid Communications, 2020, 41, e1900668.	2.0	11

Kalina Peneva

#	Article	IF	CITATIONS
37	Overcoming the barrier of CD8+ T cells: Two types of nano-sized carriers for siRNA transport. Acta Biomaterialia, 2019, 100, 338-351.	4.1	10
38	An amino acid-based heterofunctional cross-linking reagent. Amino Acids, 2014, 46, 1243-1251.	1.2	9
39	Lysosome-targeting pH indicator based on peri-fused naphthalene monoimide with superior stability for long term live cell imaging. Journal of Materials Chemistry B, 2021, 9, 112-124.	2.9	9
40	Modulation of Mitochondriotropic Properties of Cyanine Dyes by in Organello Copperâ€Free Click Reaction. ChemBioChem, 2017, 18, 1814-1818.	1.3	8
41	Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7. Frontiers in Immunology, 2017, 8, 312.	2.2	8
42	Supramolecular Reorientation During Deposition Onto Metal Surfaces of Quasi-Two-Dimensional Langmuir Monolayers Composed of Bifunctional Amphiphilic, Twisted Perylenes. Langmuir, 2021, 37, 11018-11026.	1.6	8
43	Tackling the Limitations of Copolymeric Small Interfering RNA Delivery Agents by a Combined Experimental–Computational Approach. Biomacromolecules, 2019, 20, 4389-4406.	2.6	7
44	In-depth characterization of self-healing polymers based on π–π nteractions. Beilstein Journal of Organic Chemistry, 2021, 17, 2496-2504.	1.3	7
45	Towards synthetic unimolecular [Fe2S2]-photocatalysts sensitized by perylene dyes. Dyes and Pigments, 2022, 198, 109940.	2.0	7
46	Site-specific incorporation of perylene into an N-terminally modified light-harvesting complex II. Organic and Biomolecular Chemistry, 2010, 8, 4823.	1.5	6
47	Full membrane spanning self-assembled monolayers as model systems for UHV-based studies of cell-penetrating peptides. Biointerphases, 2015, 10, 019009.	0.6	6
48	Unravelling the Mystery: Enlightenment of the Uncommon Electrochemistry of Naphthalene Monoimide [FeFe] Hydrogenase Mimics. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	6
49	Ultrasensitive aptasensor for arsenic detection using quantum dots and guanylated Poly(methacrylamide). Analytica Chimica Acta, 2022, 1209, 339854.	2.6	6
50	Characterization of the interaction forces in a drug carrier complex of doxorubicin with a drugâ€binding peptide. Chemical Biology and Drug Design, 2018, 91, 874-884.	1.5	5
51	Self-assembly of doxorubicin and a drug-binding peptide studied by molecular dynamics. Chemical Physics, 2019, 525, 110380.	0.9	5
52	Indole, Phenyl, and Phenol Groups: The Role of the Comonomer on Gene Delivery in Guanidinium Containing Methacrylamide Terpolymers. Macromolecular Rapid Communications, 2021, 42, e2000580.	2.0	4
53	PEGylation of Guanidinium and Indole Bearing Poly(methacrylamide)s – Biocompatible Terpolymers for pDNA Delivery. Macromolecular Bioscience, 2021, 21, e2100146.	2.1	3
54	Multivalency: Key Feature in Overcoming Drug Resistance with a Cleavable Cell-Penetrating Peptide-Doxorubicin Conjugate. International Journal of Peptide Research and Therapeutics, 2018, 24, 355-367.	0.9	2

#	ARTICLE	IF	CITATIONS
55	852: Branched cell-penetrating peptide drug conjugates for overcoming drug resistance. European Journal of Cancer, 2014, 50, S207-S208.	1.3	1
56	Functional Nonâ€Nucleoside Adenylyl Cyclase Inhibitors. Chemical Biology and Drug Design, 2015, 85, 633-637.	1.5	1