Joachim Peinke

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2766235/joachim-peinke-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

398
papers
7,271
citations
40
p-index
g-index

8,295
ext. papers
2.5
avg, IF
L-index

#	Paper	IF	Citations
398	Application of the TownsendLeorge theory for free shear flows to single and double wind turbine wakes a wind tunnel study. <i>Wind Energy Science</i> , 2022 , 7, 201-219	3.2	O
397	Reduction and analysis of rotor blade misalignments on a model wind turbine. <i>Journal of Physics: Conference Series</i> , 2022 , 2265, 022071	0.3	2
396	How long can constant wind speed periods last in the turbulent atmospheric boundary layer?. <i>Journal of Physics: Conference Series</i> , 2022 , 2265, 022036	0.3	
395	Experimental Investigation on the Effect of Lateral Turbine Spacing on Interactions of Wakes. Journal of Physics: Conference Series, 2022 , 2265, 042064	0.3	
394	Surrogate modelling of wind fields from point-wise atmospheric turbulence measurements. <i>Journal of Physics: Conference Series</i> , 2022 , 2265, 022026	0.3	1
393	Energy Dissipation and Total Entropy Production in SHREK Experiment. <i>Springer Proceedings in Physics</i> , 2021 , 57-63	0.2	
392	An investigation of the impact of turbulence intermittency on the rotor loads of a small wind turbine. <i>Renewable Energy</i> , 2021 , 169, 582-597	8.1	1
391	Exploring the capabilities of active grids. Experiments in Fluids, 2021, 62, 1	2.5	3
390	Evaluating Global Blockage engineering parametrizations with LES. <i>Journal of Physics: Conference Series</i> , 2021 , 1934, 012021	0.3	4
389	Application of the Townsend-George wake theory to field measurements of wind turbine wakes. Journal of Physics: Conference Series, 2021 , 1934, 012004	0.3	2
388	Experimental investigation of an active slat for airfoil load alleviation. <i>Journal of Renewable and Sustainable Energy</i> , 2021 , 13, 043304	2.5	2
387	Pressure-based lift estimation and its application to feedforward load control employing trailing-edge flaps. <i>Wind Energy Science</i> , 2021 , 6, 221-245	3.2	6
386	Cutting-Edge Turbulence Simulation Methods for Wind Energy and Aerospace Problems. <i>Fluids</i> , 2021 , 6, 288	1.6	3
385	Comparison of the turbulence in the wakes of an actuator disc and a model wind turbine by higher order statistics: A wind tunnel study. <i>Renewable Energy</i> , 2021 , 179, 1650-1662	8.1	3
384	Introduction to Turbulence 2021 , 1-27		
383	Numerical Estimation of Anti-icing Heating Power for NREL 5MW Wind Turbine Blades in Cold Climate. <i>Journal of Physics: Conference Series</i> , 2020 , 1618, 052075	0.3	
382	Distinct Turbulent Regions in the Wake of a Wind Turbine and Their Inflow-Dependent Locations: The Creation of a Wake Map. <i>Energies</i> , 2020 , 13, 5392	3.1	7

(2019-2020)

381	Disentangling stochastic signals superposed on short localized oscillations. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126307	2.3	2
380	Wind turbine partial wake merging description and quantification. Wind Energy, 2020, 23, 1610-1618	3.4	7
379	Correlated power time series of individual wind turbines: A data driven model approach. <i>Journal of Renewable and Sustainable Energy</i> , 2020 , 12, 023301	2.5	3
378	Small scale structures of turbulence in terms of entropy and fluctuation theorems. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	2
377	Multipoint reconstruction of wind speeds. Wind Energy Science, 2020, 5, 1211-1223	3.2	3
376	Generation of Atmospheric Turbulence with Unprecedentedly Large Reynolds Number in a Wind Tunnel. <i>Physical Review Letters</i> , 2020 , 125, 154503	7.4	3
375	Experimental study of fluid-structure interaction at a model wind turbine blade using optical measurement techniques. <i>Journal of Physics: Conference Series</i> , 2020 , 1618, 032025	0.3	О
374	Fluid-structure coupled investigations of the NREL 5 MW wind turbine for two downwind configurations. <i>Renewable Energy</i> , 2020 , 146, 1113-1123	8.1	5
373	Fluid Dynamics: Turbulence 2020 , 107-131		1
372	Round-robin tests of porous disc models. <i>Journal of Physics: Conference Series</i> , 2019 , 1256, 012004	0.3	7
371	Wind turbine wake intermittency dependence on turbulence intensity and pitch motion. <i>Journal of Renewable and Sustainable Energy</i> , 2019 , 11, 053302	2.5	8
370	Micro-scale wind resource assessment in complex terrain based on CFD coupled measurement from multiple masts. <i>Applied Energy</i> , 2019 , 238, 806-815	10.7	27
369	A Rigorous Entropy Law for the Turbulent Cascade. <i>ERCOFTAC Series</i> , 2019 , 17-25	0.1	0
368	Propagation of wind-power-induced fluctuations in power grids. <i>Physical Review E</i> , 2019 , 99, 050301	2.4	25
367	Detecting Hidden Units and Network Size from Perceptible Dynamics. <i>Physical Review Letters</i> , 2019 , 122, 158301	7.4	12
366	Multi-scale/fractal processes in the wake of a wind turbine array boundary layer. <i>Journal of Turbulence</i> , 2019 , 20, 93-120	2.1	12
365	Insights into the periodic gust response of airfoils. <i>Journal of Fluid Mechanics</i> , 2019 , 876, 237-263	3.7	21
364	Grand challenges in the science of wind energy. <i>Science</i> , 2019 , 366,	33.3	198

363	Wind turbine load dynamics in the context of turbulence intermittency. <i>Wind Energy Science</i> , 2019 , 4, 581-594	3.2	6
362	Scaling Laws and Intermittency in Cryogenic Turbulence Using SHREK Experiment. <i>Springer Proceedings in Physics</i> , 2019 , 179-184	0.2	0
361	Turbulence Generation by Active Grids. Springer Proceedings in Physics, 2019, 191-196	0.2	2
360	Turbulent velocity measurements in high Reynolds cryogenic helium facilities at Service des Basses Tempfatures (SBT). <i>IOP Conference Series: Materials Science and Engineering</i> , 2019 , 502, 012201	0.4	1
359	Residual Predictive Information Flow in the Tight Coupling Limit: Analytic Insights from a Minimalistic Model. <i>Entropy</i> , 2019 , 21, 1010	2.8	1
358	Bridging between load-flow and Kuramoto-like power grid models: A flexible approach to integrating electrical storage units. <i>Chaos</i> , 2019 , 29, 103151	3.3	7
357	Heterogeneities in electricity grids strongly enhance non-Gaussian features of frequency fluctuations under stochastic power input. <i>Chaos</i> , 2019 , 29, 103149	3.3	12
356	A topology-dynamics-based control strategy for multi-dimensional complex networked dynamical systems. <i>Scientific Reports</i> , 2019 , 9, 19831	4.9	1
355	The Fokker P lanck Approach to Complex Spatiotemporal Disordered Systems. <i>Annual Review of Condensed Matter Physics</i> , 2019 , 10, 107-132	19.7	21
354	Adaptation of reference volumes for correlation-based digital holographic particle tracking. <i>Measurement Science and Technology</i> , 2018 , 29, 045207	2	1
353	Aerodynamics and Percolation: Unfolding Laminar Separation Bubble on Airfoils. <i>Physical Review X</i> , 2018 , 8,	9.1	1
352	Analyzing a stochastic process driven by Ornstein-Uhlenbeck noise. <i>Physical Review E</i> , 2018 , 97, 012113	2.4	12
351	The footprint of atmospheric turbulence in power grid frequency measurements. <i>Europhysics Letters</i> , 2018 , 121, 30001	1.6	20
350	Investigation of the small-scale statistics of turbulence in the Modane S1MA wind tunnel. <i>CEAS Aeronautical Journal</i> , 2018 , 9, 269-281	1.3	13
349	Optimization of Airfoils Using the Adjoint Approach and the Influence of Adjoint Turbulent Viscosity. <i>Computation</i> , 2018 , 6, 5	2.2	6
348	Stochastic Wake Modelling Based on POD Analysis. <i>Energies</i> , 2018 , 11, 612	3.1	23
347	An engineering model for wind turbines under yawed conditions derived from high fidelity models. <i>Wind Energy</i> , 2018 , 21, 618-633	3.4	18
346	Optimize Rotating Wind Energy Rotor Blades Using the Adjoint Approach. <i>Applied Sciences</i> (Switzerland), 2018 , 8, 1112	2.6	4

345	On universal features of the turbulent cascade in terms of non-equilibrium thermodynamics. <i>Journal of Fluid Mechanics</i> , 2018 , 848, 117-153	3.7	14
344	Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width. <i>Wind Energy Science</i> , 2018 , 3, 257-273	3.2	33
343	Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear. Wind Energy Science, 2018 , 3, 329-343	3.2	38
342	Remote surface damage detection on rotor blades of operating wind turbines by means of infrared thermography. <i>Wind Energy Science</i> , 2018 , 3, 639-650	3.2	6
341	Blind test comparison on the wake behind a yawed wind turbine. Wind Energy Science, 2018, 3, 883-903	3.2	16
340	Dynamics and Synchronisation in Wind Farms 2018 , 383-388		1
339	Investigation of the validity of the Blade Element Momentum Theory for wind turbine simulations in turbulent inflow by means of Computational Fluid Dynamics. <i>Journal of Physics: Conference Series</i> , 2018 , 1102, 012012	0.3	1
338	High speed PIV measurements of an adaptive camber airfoil under highly gusty inflow conditions. Journal of Physics: Conference Series, 2018, 1037, 072007	0.3	3
337	A comparative analysis of built environment and open terrain wind data by higher order statistics and performance evaluation of 5 kW HAWT using FAST. <i>Journal of Physics: Conference Series</i> , 2018 , 1037, 072022	0.3	
336	Validating subspace predictive repetitive control under turbulent wind conditions with wind tunnel experiment. <i>Journal of Physics: Conference Series</i> , 2018 , 1037, 032008	0.3	1
335	Generation of user defined turbulent inflow conditions by an active grid for validation experiments. Journal of Physics: Conference Series, 2018, 1037, 052002	0.3	14
334	Comparison of the Blade Element Momentum Theory with Computational Fluid Dynamics for Wind Turbine Simulations in Turbulent Inflow. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 2513	2.6	5
333	On the effect of blade deformations on the aerodynamic performance of wind turbine rotors subjected to yawed inflow. <i>Journal of Physics: Conference Series</i> , 2018 , 1037, 022030	0.3	
332	Mitigating loads by means of an active slat. <i>Journal of Physics: Conference Series</i> , 2018 , 1037, 022032	0.3	2
331	Fatigue load estimations of intermittent wind dynamics based on a Blade Element Momentum method. <i>Journal of Physics: Conference Series</i> , 2018 , 1037, 072040	0.3	11
330	Fluid-structure coupled computations of the NREL 5 MW wind turbine by means of CFD. <i>Renewable Energy</i> , 2018 , 129, 591-605	8.1	32
329	Dynamic wake development of a floating wind turbine in free pitch motion subjected to turbulent inflow generated with an active grid. <i>Renewable Energy</i> , 2017 , 112, 1-16	8.1	18
328	Modelling the structural loading of a small wind turbine at a highly turbulent site via modifications to the Kaimal turbulence spectra. <i>Renewable Energy</i> , 2017 , 105, 288-300	8.1	19

327	Note on the limitations of the Theodorsen and Sears functions. <i>Journal of Fluid Mechanics</i> , 2017 , 811,	3.7	19
326	Conditional Granger causality of diffusion processes. <i>European Physical Journal B</i> , 2017 , 90, 1	1.2	4
325	Comparative study on the wake deflection behind yawed wind turbine models. <i>Journal of Physics: Conference Series</i> , 2017 , 854, 012032	0.3	16
324	Suppressing power output fluctuations of photovoltaic power plants. <i>Solar Energy</i> , 2017 , 157, 735-743	6.8	17
323	The impact of turbulent renewable energy production on power grid stability and quality. <i>European Physical Journal B</i> , 2017 , 90, 1	1.2	46
322	Parameter-free resolution of the superposition of stochastic signals. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2017 , 381, 194-206	2.3	11
321	Rogue waves and entropy consumption. <i>Europhysics Letters</i> , 2017 , 120, 30008	1.6	6
320	Normal Behaviour Models for Wind Turbine Vibrations: Comparison of Neural Networks and a Stochastic Approach. <i>Energies</i> , 2017 , 10, 1944	3.1	34
319	On the impact of non-Gaussian wind statistics on wind turbines (an experimental approach. <i>Wind Energy Science</i> , 2017 , 2, 1-13	3.2	26
318	Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw. <i>Wind Energy Science</i> , 2017 , 2, 439-442	3.2	9
317	Percolation: Statistical Description of a Spatial and Temporal Highly Resolved Boundary Layer Transition. <i>Springer Proceedings in Physics</i> , 2017 , 11-16	0.2	
316	Comparison of the Development of a Wind Turbine Wake Under Different Inflow Conditions. <i>Springer Proceedings in Physics</i> , 2017 , 177-182	0.2	
315	Wake to wake interaction of floating wind turbine models in free pitch motion: An eddy viscosity and mixing length approach. <i>Renewable Energy</i> , 2016 , 85, 666-676	8.1	30
314	Granger-causality maps of diffusion processes. <i>Physical Review E</i> , 2016 , 93, 022213	2.4	9
313	Navier-Stokes-based predictions of the aerodynamic behaviour of stall regulated wind turbines using OpenFOAM. <i>Progress in Computational Fluid Dynamics</i> , 2016 , 16, 339	0.7	5
312	Design and implementation of a controllable model wind turbine for experimental studies. <i>Journal of Physics: Conference Series</i> , 2016 , 753, 072030	0.3	10
311	Capturing rogue waves by multi-point statistics. New Journal of Physics, 2016, 18, 013017	2.9	12
310	Investigation of the validity of BEM for simulation of wind turbines in complex load cases and comparison with experiment and CFD. <i>Journal of Physics: Conference Series</i> , 2016 , 749, 012015	0.3	10

309	DDES and URANS comparison of the NREL phase-VI wind turbine at deep stall 2016,		3
308	Towards the optimization of wind turbine rotor blades by means of computational fluid dynamics and the adjoint approach 2016 ,		1
307	Stochastic Analysis of a Fractal Grid Wake. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2016 , 165-177	0.6	O
306	Development and application of a grid generation tool for aerodynamic simulations of wind turbines. <i>Wind Engineering</i> , 2016 , 40, 148-172	1.2	13
305	Progress in Turbulence VI. Springer Proceedings in Physics, 2016,	0.2	2
304	Analysis of Noisy Spatio-Temporal Data. <i>Understanding Complex Systems</i> , 2016 , 319-324	0.4	
303	Wind tunnel tests on controllable model wind turbines in yaw 2016,		14
302	Particle depth position detection by 2D correlation in digital in-line holography. <i>Optics Letters</i> , 2016 , 41, 4947-4950	3	5
301	Long-term research challenges in wind energy ha research agenda by the European Academy of Wind Energy. <i>Wind Energy Science</i> , 2016 , 1, 1-39	3.2	103
300	Detailed analysis of the blade root flow of a horizontal axis wind turbine. <i>Wind Energy Science</i> , 2016 , 1, 89-100	3.2	21
299	The Langevin Approach: An R Package for Modeling Markov Processes. <i>Journal of Open Research Software</i> , 2016 , 4,	2.3	12
298	Numerical and experimental investigation of an airfoil with load control in the wake of an active grid. <i>Journal of Physics: Conference Series</i> , 2016 , 753, 022036	0.3	1
297	Short term fluctuations of wind and solar power systems. New Journal of Physics, 2016, 18, 063027	2.9	106
296	Effects of particle locations on reconstructed particle images in digital holography. <i>Applied Optics</i> , 2016 , 55, 9532-9545	0.2	3
295	Experimental airfoil characterization under tailored turbulent conditions. <i>Journal of Physics: Conference Series</i> , 2016 , 753, 072020	0.3	5
294	Simulation and Optimization of an Airfoil with Leading Edge Slat. <i>Journal of Physics: Conference Series</i> , 2016 , 753, 022052	0.3	10
293	Phase locking of wind turbines leads to intermittent power production. <i>Europhysics Letters</i> , 2016 , 116, 60009	1.6	3
292	Disentangling the stochastic behavior of complex time series. Scientific Reports, 2016, 6, 35435	4.9	34

291	Investigation of the current yaw engineering models for simulation of wind turbines in BEM and comparison with CFD and experiment. <i>Journal of Physics: Conference Series</i> , 2016 , 753, 022016	0.3	13
290	Fluid-structure coupled computations of the NREL 5MW wind turbine blade during standstill. <i>Journal of Physics: Conference Series</i> , 2016 , 753, 022034	0.3	5
289	Application of an Integral Fluctuation Theorem to Turbulent Flows. <i>Springer Proceedings in Physics</i> , 2016 , 19-25	0.2	2
288	Gradual wavelet reconstruction of the velocity increments for turbulent wakes. <i>Physics of Fluids</i> , 2015 , 27, 025104	4.4	14
287	Dynamics of quasi-stationary systems: Finance as an example. <i>Europhysics Letters</i> , 2015 , 110, 68003	1.6	11
286	Towards a Simplified DynamicWake Model Using POD Analysis. <i>Energies</i> , 2015 , 8, 895-920	3.1	24
285	Stochastic analysis of aerodynamic forces acting on a self-adaptive camber airfoil in turbulent inflow 2015 ,		1
284	Fully developed turbulence in the view of horizontal visibility graphs. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2015 , 2015, P08031	1.9	25
283	Stability and hierarchy of quasi-stationary states: financial markets as an example. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2015 , 2015, P08011	1.9	13
282	Analyzing a stochastic time series obeying a second-order differential equation. <i>Physical Review E</i> , 2015 , 91, 062113	2.4	4
281	Characterizing Wake Turbulence with Staring Lidar Measurements. <i>Journal of Physics: Conference Series</i> , 2015 , 625, 012006	0.3	12
280	A new approach to highly resolved measurements of turbulent flow. <i>Measurement Science and Technology</i> , 2015 , 26, 055302	2	5
279	Langevin power curve analysis for numerical wind energy converter models with new insights on high frequency power performance. <i>Wind Energy</i> , 2015 , 18, 1953-1971	3.4	7
278	The Langevin Approach: A Simple Stochastic Method for Complex Phenomena. <i>Mathematical Engineering</i> , 2015 , 125-141	0.8	1
277	Stochastic modeling of driver behavior by Langevin equations. <i>European Physical Journal B</i> , 2015 , 88, 1	1.2	O
276	Stochastic Model for Aerodynamic Force Dynamics on Wind Turbine Blades in Unsteady Wind Inflow. <i>Journal of Computational and Nonlinear Dynamics</i> , 2015 , 10,	1.4	1
275	Stochastic modeling of lift and drag dynamics under turbulent wind inflow conditions. <i>Wind Energy</i> , 2015 , 18, 317-337	3.4	5
274	The aeroacoustic behavior of a cylindrical surface with a small cavity. <i>Experiments in Fluids</i> , 2014 , 55, 1	2.5	1

(2013-2014)

273	Kolmogorov spectrum of renewable wind and solar power fluctuations. <i>European Physical Journal: Special Topics</i> , 2014 , 223, 2637-2644	2.3	26
272	Stochastic analysis of ocean wave states with and without rogue waves. <i>New Journal of Physics</i> , 2014 , 16, 053037	2.9	10
271	Aerodynamic Simulation of the MEXICO Rotor. <i>Journal of Physics: Conference Series</i> , 2014 , 555, 012051	0.3	5
270	Highly resolved measurements of atmospheric turbulence with the new 2d-Atmospheric Laser Cantilever Anemometer. <i>Journal of Physics: Conference Series</i> , 2014 , 555, 012054	0.3	2
269	Reconstructing the intermittent dynamics of the torque in wind turbines. <i>Journal of Physics: Conference Series</i> , 2014 , 524, 012179	0.3	1
268	Stochastic modeling and performance monitoring of wind farm power production. <i>Journal of Renewable and Sustainable Energy</i> , 2014 , 6, 033119	2.5	23
267	2D Numerical Investigation of the Laminar and Turbulent Flow Over Different Airfoils Using OpenFOAM. <i>Journal of Physics: Conference Series</i> , 2014 , 555, 012070	0.3	10
266	POD Analysis of a Wind Turbine Wake in a Turbulent Atmospheric Boundary Layer. <i>Journal of Physics: Conference Series</i> , 2014 , 524, 012153	0.3	8
265	Insight into Rotational Effects on a Wind Turbine Blade Using NavierBtokes Computations. <i>Energies</i> , 2014 , 7, 6798-6822	3.1	31
264	Fatigue Load Estimation through a Simple Stochastic Model. <i>Energies</i> , 2014 , 7, 8279-8293	3.1	24
263	Experimental Study on Influence of Pitch Motion on the Wake of a Floating Wind Turbine Model. <i>Energies</i> , 2014 , 7, 1954-1985	3.1	39
262	Wind Energy: A Turbulent, Intermittent Resource. Research Topics in Wind Energy, 2014, 73-78	0.2	4
261	Self-organized synchronization and voltage stability in networks of synchronous machines. <i>European Physical Journal: Special Topics</i> , 2014 , 223, 2577-2592	2.3	57
2 60	Progress in Turbulence V. Springer Proceedings in Physics, 2014,	0.2	2
259	DES Study of Airfoil Lift Coefficient Sensitivity to Flow Turbulence. <i>Research Topics in Wind Energy</i> , 2014 , 9-15	0.2	
258	Stochastic nature of series of waiting times. <i>Physical Review E</i> , 2013 , 87, 062139	2.4	8
257	Multi-scale generation of turbulence with fractal grids and an active grid. <i>Fluid Dynamics Research</i> , 2013 , 45, 061407	1.2	29
256	Stochastic method for in-situ damage analysis. <i>European Physical Journal B</i> , 2013 , 86, 1	1.2	10

255	Turbulent character of wind energy. Physical Review Letters, 2013, 110, 138701	7.4	142
254	Scale dependence of the directional relationships between coupled time series. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2013 , 2013, P02042	1.9	2
253	Wind Turbine Power Performance and Application to Monitoring. <i>Energy Systems</i> , 2013 , 673-708	0.4	1
252	The level crossing and inverse statistic analysis of German stock market index (DAX) and daily oil price time series. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2012 , 391, 209-216	3.3	5
251	A Generalization of Scaling Models of Turbulence. <i>Journal of Statistical Physics</i> , 2012 , 146, 25-32	1.5	3
250	The Turbulent Flow in the Close-Up Region of Fractal Grids. Springer Proceedings in Physics, 2012, 151-1	5 4 .2	
249	A classification scheme for turbulence based on the velocity-intermittency structure with an application to near-wall flow and with implications for bed load transport. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		23
248	Multiscale probability distribution of pressure fluctuations in fluidized beds. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2012 , 2012, P07008	1.9	2
247	Characterization of wind turbulence by higher-order statistics. Wind Energy, 2012, 15, 391-406	3.4	64
246	Wake classification of heaving airfoils using the spectral/hp element method. <i>Journal of Computational and Applied Mathematics</i> , 2012 , 236, 3774-3782	2.4	5
245	The turbulent nature of the atmospheric boundary layer and its impact on the wind energy conversion process. <i>Journal of Turbulence</i> , 2012 , 13, N26	2.1	32
244	Investigations of Cavity Noise Generation on a Cylinder. Springer Proceedings in Physics, 2012, 119-122	0.2	1
243	The Relevance of Turbulence for Wind Energy Related Research. <i>Springer Proceedings in Physics</i> , 2012 , 247-250	0.2	1
242	Numerical Modeling of a WECs Power Performance under the Influence of Atmospheric and Synthetic Wind Fields. <i>Springer Proceedings in Physics</i> , 2012 , 167-170	0.2	
241	Multi-scale Analysis of Turbulence in CFD-Simulations. Springer Proceedings in Physics, 2012, 41-44	0.2	
240	Optimization of a Digital In-line Holography Setup Used with a High-Speed Camera. <i>Springer Proceedings in Physics</i> , 2012 , 97-100	0.2	
239	Development of Highly Resolving Drag Based Anemometers. Springer Proceedings in Physics, 2012, 101-	-10 <u>.4</u>	
238	Wind Energy and the Turbulent Nature of the Atmospheric Boundary Layer 2011 ,		1

237	New anemometer for offshore use. <i>Journal of Physics: Conference Series</i> , 2011 , 318, 072015	0.3	1
236	Turbulence and wind turbines. <i>Journal of Physics: Conference Series</i> , 2011 , 318, 072005	0.3	11
235	Towards a stochastic multi-point description of turbulence. <i>Journal of Physics: Conference Series</i> , 2011 , 318, 042012	0.3	1
234	Approaching complexity by stochastic methods: From biological systems to turbulence. <i>Physics Reports</i> , 2011 , 506, 87-162	27.7	207
233	High-order numerical simulations of the flow around a heaving airfoil. <i>Computers and Fluids</i> , 2011 , 51, 68-84	2.8	12
232	Atmospheric wind field conditions generated by active grids. <i>Experiments in Fluids</i> , 2011 , 51, 471-481	2.5	44
231	Atmospheric turbulence and its influence on the alternating loads on wind turbines. <i>Wind Energy</i> , 2011 , 14, 301-316	3.4	92
230	Power performance of wind energy converters characterized as stochastic process: applications of the Langevin power curve. <i>Wind Energy</i> , 2011 , 14, 711-717	3.4	11
229	Different methods to estimate the Einstein-Markov coherence length in turbulence. <i>Physical Review E</i> , 2011 , 83, 046319	2.4	3
228	Principal axes for stochastic dynamics. <i>Physical Review E</i> , 2011 , 84, 031103	2.4	10
227	Defining a new class of turbulent flows. <i>Physical Review Letters</i> , 2010 , 104, 194501	7.4	48
226	Extracting strong measurement noise from stochastic time series: applications to empirical data. <i>Physical Review E</i> , 2010 , 81, 041125	2.4	19
225	Towards a stochastic multi-point description of turbulence. New Journal of Physics, 2010, 12, 103046	2.9	30
224	Multi-scale description and prediction of financial time series. <i>New Journal of Physics</i> , 2010 , 12, 083021	2.9	11
223	Anomalous fluctuations of vertical velocity of Earth and their possible implications for earthquakes. <i>Physical Review E</i> , 2010 , 82, 036105	2.4	12
222	Drift and diffusion based models of driver behavior. <i>European Physical Journal B</i> , 2010 , 76, 99-107	1.2	3
221	Power curves for wind turbines. <i>WIT Transactions on State-of-the-art in Science and Engineering</i> , 2010 , 595-612		2
220	Characterization of short time fluctuations in atmospheric wind speeds by LIDAR measurements. <i>Meteorologische Zeitschrift</i> , 2009 , 18, 277-280	3.1	6

219	Exploring the dynamics of balance data Imovement variability in terms of drift and diffusion. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2009 , 373, 811-816	2.3	16
218	Dynamic Stall Measurements. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2009 , 9, 447-448	0.2	
217	Measurements with a 2D Laser-Cantilever-Anemometer compared to an x-wire probe. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2009 , 9, 461-462	0.2	1
216	Mapping stochastic processes onto complex networks. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2009 , 2009, P07046	1.9	55
215	Turbulencelike behavior of seismic time series. <i>Physical Review Letters</i> , 2009 , 102, 014101	7.4	47
214	Spatial Multi-Point Correlations in Inhomogeneous Turbulence. <i>Springer Proceedings in Physics</i> , 2009 , 33-36	0.2	1
213	Impact of Atmospheric Turbulence on the Power Output of Wind Turbines. <i>Springer Proceedings in Physics</i> , 2009 , 95-98	0.2	1
212	Synthetic Turbulence Models for Wind Turbine Applications. Springer Proceedings in Physics, 2009, 111-	1 1542	6
211	Active grid generated turbulence. Springer Proceedings in Physics, 2009, 903-903	0.2	2
2 10	Stochastic Analysis of Turbulence n-Scale Correlations in Regular and Fractal-Generated Turbulence. <i>Springer Proceedings in Physics</i> , 2009 , 49-52	0.2	
209	Multi-scale correlations in regular and fractal-generated turbulence. <i>Springer Proceedings in Physics</i> , 2009 , 711-714	0.2	
208	Using the 2D Laser-Cantilever-Anemometer for Two-Dimensional Measurements in Turbulent Flows. <i>Springer Proceedings in Physics</i> , 2009 , 61-64	0.2	1
207	Measurement of Lagrangian Particle Trajectories by Digital in-line Holography. <i>Springer Proceedings in Physics</i> , 2009 , 39-42	0.2	
206	The Sphere Anemometer A Fast Alternative to Cup Anemometry. <i>Springer Proceedings in Physics</i> , 2009 , 69-72	0.2	
205	How to improve the estimation of power curves for wind turbines. <i>Environmental Research Letters</i> , 2008 , 3, 015005	6.2	66
204	On the definition and handling of different drift and diffusion estimates. <i>New Journal of Physics</i> , 2008 , 10, 083034	2.9	50
203	Wind velocity measurements using a pulsed LIDAR system: first results. <i>IOP Conference Series: Earth and Environmental Science</i> , 2008 , 1, 012066	0.3	5
202	Increase of order in seismic processes around large reservoir induced by water level periodic variation. <i>Nonlinear Dynamics</i> , 2008 , 51, 399-407	5	19

201	Markovian power curves for wind turbines. Wind Energy, 2008, 11, 219-232	3.4	34
200	Multiscale analysis and reconstruction of time series of stochastic cascade processes. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2008 , 8, 10769-10770	0.2	
199	Multi-Scale Analysis of Turbulence. <i>IUTAM Symposium on Cellular, Molecular and Tissue Mechanics</i> , 2008 , 99-104	0.3	
198	Medium and small-scale analysis of financial data. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2007 , 382, 193-198	3.3	8
197	Complete multiplier statistics explained by stochastic cascade processes. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2007 , 371, 34-38	2.3	1
196	Dynamic stall measurements on airfoils. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2007 , 7, 40	90021-	-4090022
195	Slowly mixing cylinder in a cone-shaped nozzle. Experiments in Fluids, 2007, 42, 811-814	2.5	1
194	Small and large scale fluctuations in atmospheric wind speeds. <i>Stochastic Environmental Research and Risk Assessment</i> , 2007 , 21, 299-308	3.5	68
193	Dynamic lift measurements on a FX79W151A airfoil via pressure distribution on the wind tunnel walls. <i>Journal of Physics: Conference Series</i> , 2007 , 75, 012026	0.3	6
192	Markov properties in presence of measurement noise. <i>Physical Review E</i> , 2007 , 76, 041109	2.4	12
191	Improved estimation of Fokker-Planck equations through optimization. <i>Physical Review E</i> , 2007 , 76, 05	612027	23
190	Sphere anemometer - a faster alternative solution to cup anemometry. <i>Journal of Physics: Conference Series</i> , 2007 , 75, 012064	0.3	6
189	Stochastic modelling of a wind turbine@power output with special respect to turbulent dynamics. Journal of Physics: Conference Series, 2007, 75, 012045	0.3	16
188	Analysing flow structures around a blade using spectral/hp method and HPIV. <i>Journal of Physics: Conference Series</i> , 2007 , 75, 012025	0.3	
187	Markov analysis and Kramers-Moyal expansion of nonstationary stochastic processes with application to the fluctuations in the oil price. <i>Physical Review E</i> , 2007 , 75, 060102	2.4	41
186	Multiplier Statistics Explained by Stochastic Cascade Processes 2007 , 53-56		
185	Statistics of the Temperature Fluctuations as a Passive Scalar in a Freejet Experiment 2007 , 103-106		
184	Superposition Model for Atmospheric Turbulence 2007 , 115-118		

Numerical Simulation of Dynamic Stall using Spectral/hp Method **2007**, 241-244

182	Anemometry in Snow Particle Flows 2007 , 75-78		1
181	Phenomenological Response Theory to Predict Power Output 2007 , 153-158		3
180	Characterisation of the Power Curve for Wind Turbines by Stochastic Modelling 2007 , 173-177		3
179	Handling Systems Driven by Different Noise Sources: Implications for Power Curve Estimations 2007 , 179-182		6
178	Modelling Turbulence Intensities Inside Wind Farms 2007 , 253-257		1
177	Stochastic Analysis and New Insights into Turbulence 2007 , 494-496		1
176	Reconstruction of complex dynamical systems affected by strong measurement noise. <i>Physical Review Letters</i> , 2006 , 97, 090603	7.4	55
175	Joint multi-scale statistics of longitudinal and transversal increments in small-scale wake turbulence. <i>Journal of Turbulence</i> , 2006 , 7, N50	2.1	8
174	STATISTICAL PROPERTIES OF THE INTERBEAT INTERVAL CASCADE IN HUMAN HEARTS. International Journal of Modern Physics C, 2006 , 17, 571-580	1.1	9
173	Fully developed turbulent dynamo at low magnetic Prandtl numbers. <i>Journal of Turbulence</i> , 2006 , 7, N39	2.1	33
172	New computational approaches to the analysis of interbeat intervals in human subjects. <i>Computing in Science and Engineering</i> , 2006 , 8, 54-65	1.5	15
171	Influence of periodic variations in water level on regional seismic activity around a large reservoir: Field data and laboratory model. <i>Physics of the Earth and Planetary Interiors</i> , 2006 , 156, 130-142	2.3	26
170	Short-Term Prediction of Mediumand Large-Size Earthquakes Based on Markov and Extended Self-Similarity Analysis of Seismic Data 2006 , 281-301		4
169	Using laser-cantilever anemometry under various flow conditions. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2006 , 6, 525-526	0.2	
168	Longitudinal and transversal two-point correlations in a turbulent flow. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2006 , 6, 551-552	0.2	
167	Stochastic Modelling of Wind Speed Power Production Correlations. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2006 , 6, 665-666	0.2	3
166	The MarkovEinstein coherence length new meaning for the Taylor length in turbulence. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2006 , 359, 335-338	2.3	50

(2004-2006)

165	Multiscale reconstruction of time series. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2006 , 360, 234-237	2.3	32
164	Small scale behavior of financial data. <i>European Physical Journal B</i> , 2006 , 50, 147-151	1.2	4
163	Analysis of non-stationary data for heart-rate fluctuations in terms of drift and diffusion coefficients. <i>Journal of Biological Physics</i> , 2006 , 32, 117-28	1.6	35
162	Stochastic analysis of single particle segregational dynamics. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2005 , 336, 428-433	2.3	9
161	An iterative procedure for the estimation of drift and diffusion coefficients of Langevin processes. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2005 , 346, 42-46	2.3	53
160	Regeneration of stochastic processes: an inverse method. European Physical Journal B, 2005, 47, 411-41	51.2	27
159	Wind Gusts and Small Scale Intermittency in Atmospheric Flows. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2005 , 5, 561-562	0.2	4
158	Analysis and characterization of surface topographies with the theory of Markov processes. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2005 , 5, 701-702	0.2	
157	Laser-cantilever anemometer: A new high-resolution sensor for air and liquid flows. <i>Review of Scientific Instruments</i> , 2005 , 76, 075110	1.7	25
156	A Simple Relation Between Longitudinal and Transverse Increments 2005 , 63-66		
156 155	A Simple Relation Between Longitudinal and Transverse Increments 2005 , 63-66 Laser-Cantilever-Anemometer 2005 , 129-132		
		2.4	11
155	Laser-Cantilever-Anemometer 2005 , 129-132 Different cascade speeds for longitudinal and transverse velocity increments of small-scale		11 9
155 154	Laser-Cantilever-Anemometer 2005 , 129-132 Different cascade speeds for longitudinal and transverse velocity increments of small-scale turbulence. <i>Physical Review E</i> , 2004 , 70, 015302		
155 154 153	Laser-Cantilever-Anemometer 2005 , 129-132 Different cascade speeds for longitudinal and transverse velocity increments of small-scale turbulence. <i>Physical Review E</i> , 2004 , 70, 015302 Increment definitions for scale-dependent analysis of stochastic data. <i>Physical Review E</i> , 2004 , 70, 0551 RECONSTRUCTION OF THE DETERMINISTIC DYNAMICS OF STOCHASTIC SYSTEMS. <i>International</i>	03.4	9
155 154 153 152	Laser-Cantilever-Anemometer 2005, 129-132 Different cascade speeds for longitudinal and transverse velocity increments of small-scale turbulence. <i>Physical Review E</i> , 2004, 70, 015302 Increment definitions for scale-dependent analysis of stochastic data. <i>Physical Review E</i> , 2004, 70, 0551 RECONSTRUCTION OF THE DETERMINISTIC DYNAMICS OF STOCHASTIC SYSTEMS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2004, 14, 2005-2010	03.4	9
155 154 153 152 151	Laser-Cantilever-Anemometer 2005, 129-132 Different cascade speeds for longitudinal and transverse velocity increments of small-scale turbulence. <i>Physical Review E</i> , 2004, 70, 015302 Increment definitions for scale-dependent analysis of stochastic data. <i>Physical Review E</i> , 2004, 70, 0551 RECONSTRUCTION OF THE DETERMINISTIC DYNAMICS OF STOCHASTIC SYSTEMS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2004, 14, 2005-2010 Stochastic analysis of different rough surfaces. <i>European Physical Journal B</i> , 2004, 41, 259-277 Anomalous statistics in turbulence, financial markets and other complex systems. <i>Annalen Der</i>	2 1.2	9 14 42

147	Fat Tail Statistics and Beyond. Advances in Solid State Physics, 2004, 363-374		3
146	Stochastic analysis of surface roughness. <i>Europhysics Letters</i> , 2003 , 64, 579-585	1.6	28
145	On the Statistics of Wind Gusts. Boundary-Layer Meteorology, 2003, 108, 163-173	3.4	68
144	On a quantitative method to analyze dynamical and measurement noise. <i>Europhysics Letters</i> , 2003 , 61, 466-472	1.6	75
143	Experimental indications for Markov properties of small scale turbulence. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2002 , 1, 462	0.2	1
142	Stochastic modeling of fat-tailed probabilities of foreign exchange rates. <i>Complexity</i> , 2002 , 8, 34-42	1.6	14
141	Reconstruction of dynamical equations for traffic flow. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2002 , 299, 287-291	2.3	43
140	Comment on "Indispensable finite time corrections for Fokker-Planck equations from time series data". <i>Physical Review Letters</i> , 2002 , 89, 149401; author reply 149402	7.4	62
139	Universality of small scale turbulence. <i>Physical Review Letters</i> , 2002 , 89, 124502	7.4	48
138	Estimation of Deterministic and Stochastic Rules Underlying Fluctuating Data. <i>Studies in Computational Finance</i> , 2002 , 375-399		
137	Light-in-flight holography with switched reference beams for cross-correlation in deep volume PIV 2002 , 3-23		
136	Turbulence and Financial Market Data Analyzed with Respect to Their Scale Dependent Complexity 2002 , 151-169		
135	Evidence of Markov properties of high frequency exchange rate data. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2001 , 298, 499-520	3.3	72
134	Experimental indications for Markov properties of small-scale turbulence. <i>Journal of Fluid Mechanics</i> , 2001 , 433, 383-409	3.7	176
133	On a Complete Statistical Characterization of Turbulence. <i>Fluid Mechanics and Its Applications</i> , 2001 , 107-116	0.2	1
132	Extracting model equations from experimental data. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2000 , 271, 217-222	2.3	154
131	MARKOV PROPERTIES OF HIGH FREQUENCY EXCHANGE RATE DATA. <i>International Journal of Theoretical and Applied Finance</i> , 2000 , 03, 415-416	0.5	3
130	Orientational transition in nematic liquid crystals under oscillatory Poiseuille flow. <i>Europhysics Letters</i> , 2000 , 51, 48-54	1.6	9

129	How to quantify deterministic and random influences on the statistics of the foreign exchange market. <i>Physical Review Letters</i> , 2000 , 84, 5224-7	7.4	154
128	Uniform Statistical Description of the Transition between Near and Far Field Turbulence in a Wake Flow. <i>Physical Review Letters</i> , 1999 , 83, 5495-5498	7.4	21
127	Determination of fokker-planck equations from experimental data sets of complex systems 1999 , 273-	281	
126	A new method to characterize inhomogeneous turbulence 1999 , 361-364		Ο
125	On the statistics of small-scale turbulence and its universality 1999 , 353-360		
124	Analysis of data sets of stochastic systems. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1998 , 243, 275-280	2.3	208
123	Conditional statistics of velocity fluctuations in turbulence. <i>Physica D: Nonlinear Phenomena</i> , 1998 , 113, 73-78	3.3	24
122	A note on three-point statistics of velocity increments in turbulence. <i>Europhysics Letters</i> , 1998 , 41, 153-	-1 <u>5</u> .8	29
121	Improved multifractal box-counting algorithm, virtual phase transitions, and negative dimensions. <i>Physical Review E</i> , 1998 , 57, 5489-5493	2.4	21
120	Dynamics of disordered patterns in electroconvection of homeotropically aligned nematic liquid crystals. <i>Physical Review E</i> , 1998 , 58, 1983-1991	2.4	29
119	Formation of chevrons in the dielectric regime of electroconvection in nematic liquid crystals. <i>Physical Review E</i> , 1998 , 58, 2018-2026	2.4	29
118	Disordered structures analyzed by the theory of Markov processes 1998 , 313-326		4
117	Toward a better understanding of fractality in nature 1998 , 79-92		2
116	Unifying iteration rule for fractal objects. <i>Journal of Physics A</i> , 1997 , 30, 1887-1896		
115	Fokker-Planck equation for the energy cascade in turbulence. <i>Physical Review E</i> , 1997 , 56, 6719-6722	2.4	34
114	A New Approach to Characterize Disordered Structures. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1997 , 52, 588-592	1.4	5
113	DevisenmEkte und Turbulenz. <i>Physik Journal</i> , 1997 , 53, 339-340		1
112	Description of a Turbulent Cascade by a Fokker-Planck Equation. <i>Physical Review Letters</i> , 1997 , 78, 863-	-8 <u>6</u> .6	280

111	Scaling Properties of Traffic-flow Data. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1997 , 52, 600-604	1.4	17
110	Whispering Gallery Orbits in the Bunimovich Stadium. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1997 , 52, 581-584	1.4	2
109	Statistical properties of a turbulent cascade. <i>Physica D: Nonlinear Phenomena</i> , 1997 , 102, 147-155	3.3	72
108	Chaotic billiards seen as mirror cabinets. <i>Physica D: Nonlinear Phenomena</i> , 1997 , 102, 227-233	3.3	3
107	On the form invariance of phase length distributions of type-I intermittency observed in a low-temperature semiconductor experiment. <i>Europhysics Letters</i> , 1996 , 36, 675-680	1.6	2
106	Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. <i>Europhysics Letters</i> , 1996 , 34, 411-416	1.6	197
105	Conditional probability distributions of a turbulent cascade 1996 , 54-62		
104	Statistical dependency of eddies of different sizes in turbulence. <i>Zeitschrift F\(\textit{D}\) Physik B-Condensed Matter</i> , 1996 , 101, 157-159		9
103	Turbulent cascades in foreign exchange markets. <i>Nature</i> , 1996 , 381, 767-770	50.4	479
102	Turbulence and Financial Markets. Fluid Mechanics and Its Applications, 1996, 167-170	0.2	1
101	Multiplicative Process in Turbulent Velocity Statistics: A Simplified Analysis. <i>Journal De Physique II</i> , 1996 , 6, 455-460		14
			14
100	Symmetry-breaking and fractal dependence on initial conditions in dynamical systems: One-dimensional noninvertible mappings. <i>Chaos, Solitons and Fractals,</i> 1995 , 5, 783-796	9.3	1
100	Symmetry-breaking and fractal dependence on initial conditions in dynamical systems:	9.3	
	Symmetry-breaking and fractal dependence on initial conditions in dynamical systems: One-dimensional noninvertible mappings. <i>Chaos, Solitons and Fractals,</i> 1995 , 5, 783-796 Dweiltime Analysis of Symmetry-Breaking Dynamical Systems. <i>Zeitschrift Fur Naturforschung</i> -		1
99	Symmetry-breaking and fractal dependence on initial conditions in dynamical systems: One-dimensional noninvertible mappings. <i>Chaos, Solitons and Fractals,</i> 1995 , 5, 783-796 Dweiltime Analysis of Symmetry-Breaking Dynamical Systems. <i>Zeitschrift Fur Naturforschung-Section A Journal of Physical Sciences</i> , 1995 , 50, 1117-1122 Attractor Merging Crisis in the Double-Scroll Oscillator. <i>Zeitschrift Fur Naturforschung - Section A</i>	1.4	1
99 98	Symmetry-breaking and fractal dependence on initial conditions in dynamical systems: One-dimensional noninvertible mappings. <i>Chaos, Solitons and Fractals,</i> 1995 , 5, 783-796 Dweiltime Analysis of Symmetry-Breaking Dynamical Systems. <i>Zeitschrift Fur Naturforschung-Section A Journal of Physical Sciences</i> , 1995 , 50, 1117-1122 Attractor Merging Crisis in the Double-Scroll Oscillator. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1995 , 50, 1105-1107	1.4	1 1
99 98 97	Symmetry-breaking and fractal dependence on initial conditions in dynamical systems: One-dimensional noninvertible mappings. Chaos, Solitons and Fractals, 1995, 5, 783-796 Dweiltime Analysis of Symmetry-Breaking Dynamical Systems. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1995, 50, 1117-1122 Attractor Merging Crisis in the Double-Scroll Oscillator. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1995, 50, 1105-1107 Transition toward developed turbulence. Physical Review Letters, 1994, 73, 3227-3230 Type-I intermittency in semiconductor breakdown: An experimental confirmation. Physical Review B	1.4 1.4 7.4	1 1 1 89

93	On the Relation between Statistics of Scalar and Velocity Fluctuations in Developed Turbulence. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1994 , 49, 831-834	1.4	
92	Velocity intermittency in turbulence: how to objectively characterize it?. <i>Journal De Physique II</i> , 1994 , 4, 215-224		12
91	Anemometry in gaseous 4He around 4 K. <i>Journal De Physique III</i> , 1994 , 4, 671-674		8
90	On chaos, fractals and turbulence. <i>Physica Scripta</i> , 1993 , T49B, 672-676	2.6	4
89	Stochastic Resonance in Experiment. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1993 , 48, 633-635	1.4	4
88	Experimental realization of mode locking during intrinsic quasiperiodicity in p-type germanium. <i>Physical Review B</i> , 1993 , 48, 12603-12608	3.3	2
87	Spatial coherence of nonlinear dynamics in a semiconductor experiment. <i>Physical Review B</i> , 1993 , 47, 115-124	3.3	3
86	Reaction Time to Voltage Pulses Applied to Semiconductor Impact Ionization Breakdown. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1993 , 48, 639-640	1.4	4
85	On a Fractal Model for Turbulence. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1993 , 48, 646-650	1.4	
84	Symbolic-dynamical analysis of a transition between different limit cycles observed in a semiconductor experiment. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1993 , 177, 148-152	2.3	1
83	Type-I intermittency in semiconductor breakdown - experimental consequences of bifurcations from a toroidal attractor. <i>Physica D: Nonlinear Phenomena</i> , 1993 , 66, 187-194	3.3	1
82	A hot wire anemometer for cryogenic hydrodynamic experiments. <i>Flow, Turbulence and Combustion</i> , 1993 , 51, 143-148		1
81	Logarithmic frequency scaling of semiconductor oscillations caused by a modified saddle-node bifurcation on a limit cycle. <i>European Physical Journal B</i> , 1993 , 91, 527-529	1.2	5
80	On Negative Differential Resistance and Spontaneous Dissipative Structure Formation in the Electric Break-Down of p-Ge at Low Temperatures. <i>NATO ASI Series Series B: Physics</i> , 1993 , 261-268		
79	An oscillation mechanism of semiconductor breakdown due to magnetic field induced transverse motion of current filaments. <i>Semiconductor Science and Technology</i> , 1992 , 7, B486-B487	1.8	1
78	Critical Dynamics of the Quasi-One-Dimensional Blue Bronze K 0.3 MoO 3 at Low Temperatures. <i>Europhysics Letters</i> , 1992 , 18, 125-131	1.6	9
77	Low-temperature avalanche breakdown in p-Ge: Influence of the acceptor concentration. <i>Journal of Applied Physics</i> , 1992 , 71, 3336-3338	2.5	5
76	A generic mechanism determining the fractality of basin boundary structures. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1992 , 191, 571-575	3.3	

75	Spatial correlation of chaotic and hyperchaotic dynamics in a semiconductor experiment. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1992 , 164, 201-205	2.3	3
74	A hot wire anemometer for cryogenic hydrodynamic experiments. <i>Cryogenics</i> , 1992 , 32, 545-548	1.8	5
73	Encounter with Chaos 1992 ,		68
72	Nonlinear Dynamics 1992 , 42-170		
71	Current Instabilites in the Interplay Between Chaos and Semiconductor Physics 1992, 51-67		
70	Semiconductor Physics 1992 , 9-41		
69	Self-Organized Critical Dynamics and Phase Transition Behavior During Avalanche Breakdown in p-Germanium. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1991 , 46, 1009-101	I1 ^{1.4}	2
68	Reconstruction of traveling waves in semi-insulating GaAs. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1991 , 152, 356-360	2.3	9
67	Resonant imaging of a critical dynamical state in the low-temperature electric transport of p-Ge. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1991 , 153, 385-389	2.3	5
66	Phase transitions in experimental systems. <i>Physica D: Nonlinear Phenomena</i> , 1991 , 50, 405-411	3.3	15
65	Evidence of Type-III Intermittency in the Electric Breakdown of p -Type Germanium. <i>Europhysics Letters</i> , 1991 , 14, 1-6	1.6	19
64	Nowhere Differentiable Boundaries in Differentiable Systems. A Proposed Explanation. <i>Europhysics Letters</i> , 1991 , 14, 615-620	1.6	12
63	Classification of spontaneous oscillations at the onset of avalanche breakdown in p-type germanium. <i>Physical Review B</i> , 1991 , 43, 2255-2262	3.3	37
62	HOW TWO COMPETING CHARACTERISTIC EXPONENTS GENERATE DIFFERENT CLASSES OF FRACTAL BOUNDARIES. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 1991 , 01, 599-604	2	4
61	Dynamics of current filaments in p-type germanium under the influence of a transverse magnetic field. <i>Journal of Applied Physics</i> , 1991 , 70, 232-235	2.5	22
60	Toward a better understanding of fractality in nature. <i>Computers and Graphics</i> , 1991 , 15, 583-596	1.8	2
59	On the Scaling of Type-1 Intermittency in a Semiconductor Experiment. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1991 , 46, 1012-1014	1.4	5
58	Spatio [Temporal Correlations in Semiconductors 1991 , 145-176		4

57	First Evidence of Self-Organized Criticality in the Impact Ionization Breakdown of Semiconductors. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1990 , 45, 835-836	1.4		
56	Report: Nonequilibrium Phase Transitions of Impact Ionization Breakdown in Extrinsic Semiconductors. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1990 , 45, 1048-1	0 50		
55	Observation of a Large-Scale Sheetlike Current Filament in a Thinn-GaAs Layer. <i>Journal of the Physical Society of Japan</i> , 1990 , 59, 420-423	1.5	21	
54	Electron-beam induced instability during filamentary current transport inn-GaAs. <i>European Physical Journal B</i> , 1990 , 81, 53-58	1.2	18	
53	Circuit-limited oscillation at the onset of avalanche breakdown in semiconductors. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1990 , 147, 229-233	2.3	11	
52	Nascent states of current filamentation in semiconductors governed by negative differential resistance. <i>Solid State Communications</i> , 1990 , 73, 369-372	1.6	4	
51	Existence of Nowhere Differentiable Boundaries in a Realistic Map. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1990 , 45, 1377-1379	1.4	2	
50	Self-Organized Critical Behaviour in the Low-Temperature Impact Ionization Breakdown of p-Ge. <i>Europhysics Letters</i> , 1990 , 12, 423-428	1.6	17	
49	Quasi-Periodic Behavior of d.cBiased Semiconductor Electronic Breakdown. <i>Europhysics Letters</i> , 1990 , 12, 13-18	1.6	10	
48	Nonequilibrium phase transition in the electronic transport of p-type germanium at low temperatures. <i>Physical Review B</i> , 1990 , 42, 9019-9024	3.3	10	
47	Breakdown of symmetry in an exemplary turing system. <i>Dynamical Systems</i> , 1990 , 5, 99-112		1	
46	Impact ionization avalanche breakdown in short crystal regions of p-Ge. <i>Journal of Applied Physics</i> , 1990 , 67, 2980-2984	2.5	16	
45	Critical Dynamics near the Onset of Spontaneous Oscillations in p -Germanium. <i>Europhysics Letters</i> , 1989 , 9, 743-748	1.6	20	
44	Symmetry-breaking pattern formation in semiconductor physics: Spatio-temporal current structures during avalanche breakdown. <i>Computers and Mathematics With Applications</i> , 1989 , 17, 467-4	7 3 .7	1	
43	A p-Ge semiconductor experiment showing chaos and hyperchaos. <i>Physica D: Nonlinear Phenomena</i> , 1989 , 35, 425-435	3.3	41	
42	Impact ionization breakdown in p-germanium samples with very short contact distances. <i>Solid-State Electronics</i> , 1989 , 32, 1197-1200	1.7	2	
41	Imaging of spatio-temporal structures in semiconductors. <i>Solid-State Electronics</i> , 1989 , 32, 1365-1369	1.7	21	
40	Experimental progress in the nonlinear behavior of semiconductors. <i>Applied Physics A: Solids and Surfaces</i> , 1989 , 48, 107-110		24	

39	Classification of current instabilities during low-temperature breakdown in germanium. <i>Applied Physics A: Solids and Surfaces</i> , 1989 , 48, 155-160		29
38	Characteristic Relaxation Times of Low-temperature Semiconductor Breakdown Kinetics. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1989 , 44, 629-632	1.4	2
37	Evidence of Chaotic Hierarchy in a Semiconductor Experiment. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1989 , 44, 1046-1050	1.4	2
36	Resonance Transition of the Spatial Correlation Factor of Self-Generated Oscillations in the Postbreakdown Regime of p-Ge. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1989 , 44, 1139-1144	1.4	5
35	Cryoelectronic Application of a Hybrid Device Concept Based on Semiconducting and Superconducting Components 1989 , 575-578		
34	SYMMETRY-BREAKING PATTERN FORMATION IN SEMICONDUCTOR PHYSICS: SPATIO-TEMPORAL CURRENT STRUCTURES DURING AVALANCHE BREAKDOWN 1989 , 467-473		
33	Resonance imaging of dynamical filamentary current structures in a semiconductor. <i>Physica D: Nonlinear Phenomena</i> , 1988 , 32, 306-317	3.3	34
32	Spatio-temporal instabilities in the electric breakdown of p-germanium. <i>Solid-State Electronics</i> , 1988 , 31, 817-820	1.7	21
31	Determination of electric transport properties in the pre- and post-breakdown regime ofp-germanium. <i>European Physical Journal B</i> , 1988 , 72, 225-233	1.2	30
30	Switching behavior of current filaments inp-germanium connected in parallel. <i>European Physical Journal B</i> , 1988 , 71, 305-310	1.2	9
29	Hall-effect measurements during low-temperature avalanche breakdown of p-germanium. <i>Philosophical Magazine Letters</i> , 1988 , 57, 311-314	1	2
28	Smooth Decomposition of Generalized Fatou Set Explains Smooth Structure in Generalized Mandelbrot Set. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1988 , 43, 14-16	1.4	5
27	Non-Differentiable Structure in the Generalized Mandelbrot Set. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1988 , 43, 287-288	1.4	3
26	SPATIO-TEMPORAL INSTABILITIES IN THE ELECTRIC BREAKDOWN OF P-GERMANIUM 1988 , 817-820		
25	Notizen: Comparison Between a Generic Reaction- Diffusion Model and a Synergetic Semiconductor System. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1987 , 42, 655-656	1.4	14
24	Spatial and Temporal Current Instabilities in Germanium. <i>Physica Scripta</i> , 1987 , T19B, 505-510	2.6	32
23	Self-Organized Formation of Spatial and Temporal Dissipative Structures in Semiconductors. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1987 , 42, 329-332	1.4	6
22	Different Types of Current Instabilities During Low-Temperature Avalanche Breakdown of p-Germanium. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1987 , 42, 441-443	1.4	12

(1985-1987)

21	Spatially resolved observation of current filament dynamics in semiconductors. <i>Solid State Communications</i> , 1987 , 63, 55-59	1.6	89
20	Exemplary locking sequence during self-generated quasiperiodicity of extrinsic germanium. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1987 , 124, 335-339	2.3	27
19	Spatial correlations of chaotic oscillations in the post-breakdown regime of p-Ge. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 1987 , 119, 419-424	2.3	40
18	Spontaneous resistance oscillations inp-germanium at low temperatures and their spatial correlation. <i>European Physical Journal B</i> , 1987 , 66, 515-521	1.2	17
17	Positive and negative differential resistance in electrical conductors. <i>European Physical Journal B</i> , 1987 , 66, 65-73	1.2	33
16	Chaos in semiconductors. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1987 , 2, 3-11		13
15	Instability of the Mandelbrot Set. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1987 , 42, 263-266	1.4	8
14	Quasiperiodicity and Mode Locking of Undriven Spontaneous Oscillations in Germanium Crystals. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1987 , 42, 841-845	1.4	20
13	Turbulent Morphogenesis of a Prototype Model Reaction-Diffusion System 1987, 91-95		1
12	The Classes of Fractals. <i>Springer Series in Synergetics</i> , 1987 , 275-281	0.4	
12	The Classes of Fractals. <i>Springer Series in Synergetics</i> , 1987 , 275-281 Chaos and hyperchaos in the electric avalanche breakdown of p-germanium at 4.2 K. <i>Physica D: Nonlinear Phenomena</i> , 1986 , 23, 176-180	0.4	7
	Chaos and hyperchaos in the electric avalanche breakdown of p-germanium at 4.2 K. <i>Physica D:</i>		7
11	Chaos and hyperchaos in the electric avalanche breakdown of p-germanium at 4.2 K. <i>Physica D: Nonlinear Phenomena</i> , 1986 , 23, 176-180 A simple morphogenetic reaction-diffusion model describing nonlinear transport phenomena in	3.3	
11	Chaos and hyperchaos in the electric avalanche breakdown of p-germanium at 4.2 K. <i>Physica D: Nonlinear Phenomena</i> , 1986 , 23, 176-180 A simple morphogenetic reaction-diffusion model describing nonlinear transport phenomena in semiconductors. <i>European Physical Journal B</i> , 1986 , 65, 259-266 Magnetic control and switching of current filaments in a semiconductor. <i>Solid State</i>	3.3	20
11 10 9	Chaos and hyperchaos in the electric avalanche breakdown of p-germanium at 4.2 K. <i>Physica D: Nonlinear Phenomena</i> , 1986 , 23, 176-180 A simple morphogenetic reaction-diffusion model describing nonlinear transport phenomena in semiconductors. <i>European Physical Journal B</i> , 1986 , 65, 259-266 Magnetic control and switching of current filaments in a semiconductor. <i>Solid State Communications</i> , 1986 , 58, 323-325 Crosstalk of the dynamical dissipative behavior between different parts in a current-carrying	3·3 1.2 1.6	20
11 10 9	Chaos and hyperchaos in the electric avalanche breakdown of p-germanium at 4.2 K. <i>Physica D: Nonlinear Phenomena</i> , 1986 , 23, 176-180 A simple morphogenetic reaction-diffusion model describing nonlinear transport phenomena in semiconductors. <i>European Physical Journal B</i> , 1986 , 65, 259-266 Magnetic control and switching of current filaments in a semiconductor. <i>Solid State Communications</i> , 1986 , 58, 323-325 Crosstalk of the dynamical dissipative behavior between different parts in a current-carrying semiconductor. <i>Applied Physics Letters</i> , 1986 , 48, 233-235 Hyperchaos and Julia Sets. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> ,	3.3 1.2 1.6	20 9 7
11 10 9 8	Chaos and hyperchaos in the electric avalanche breakdown of p-germanium at 4.2 K. <i>Physica D: Nonlinear Phenomena</i> , 1986 , 23, 176-180 A simple morphogenetic reaction-diffusion model describing nonlinear transport phenomena in semiconductors. <i>European Physical Journal B</i> , 1986 , 65, 259-266 Magnetic control and switching of current filaments in a semiconductor. <i>Solid State Communications</i> , 1986 , 58, 323-325 Crosstalk of the dynamical dissipative behavior between different parts in a current-carrying semiconductor. <i>Applied Physics Letters</i> , 1986 , 48, 233-235 Hyperchaos and Julia Sets. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1986 , 41, 819-822 Spontaneous oscillations and chaos in p-germanium. <i>Physics Letters, Section A: General, Atomic and</i>	3·3 1.2 1.6 3·4	20 9 7

3 How to Design a 2D Active Grid for Dynamic Inflow Modulation. Flow, Turbulence and Combustion,1 2.5 o

2	IEA Wind TCP: Results of IEA Wind TCP Workshop on a Grand Vision for Wind Energy Technology	5

Explicit construction of joint multipoint statistics in complex systems. Journal of Physics Complexity, 1.8 4