David R Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2765732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Senescent Microglia: The Key to the Ageing Brain?. International Journal of Molecular Sciences, 2021, 22, 4402.	1.8	30
2	Microglia and the aging brain: are senescent microglia the key to neurodegeneration?. Journal of Neurochemistry, 2019, 151, 676-688.	2.1	150
3	Levels of α―and βâ€synuclein regulate cellular susceptibility to toxicity from αâ€synuclein oligomers. FASEB Journal, 2018, 32, 995-1006.	0.2	9
4	Altered Processing of \hat{l}^2 -Amyloid in SH-SY5Y Cells Induced by Model Senescent Microglia. ACS Chemical Neuroscience, 2018, 9, 3137-3152.	1.7	25
5	Model Senescent Microglia Induce Disease Related Changes in α-Synuclein Expression and Activity. Biomolecules, 2018, 8, 67.	1.8	17
6	Steady-State Kinetics of Î \pm -Synuclein Ferrireductase Activity Identifies the Catalytically Competent Species. Biochemistry, 2017, 56, 2497-2505.	1.2	21
7	Alpha-synuclein ferrireductase activity is detectible in vivo, is altered in Parkinson's disease and increases the neurotoxicity of DOPAL. Molecular and Cellular Neurosciences, 2017, 85, 1-11.	1.0	18
8	Removal of glucuronic acid from xylan is a strategy to improve the conversion of plant biomass to sugars for bioenergy. Biotechnology for Biofuels, 2017, 10, 224.	6.2	57
9	Metals and Prions: Twenty Years of Mining the Awe. , 2017, , 95-115.		3
10	α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP. PLoS ONE, 2017, 12, e0171925.	1.1	45
11	Alpha-synuclein: relating metals to structure, function and inhibition. Metallomics, 2016, 8, 385-397.	1.0	31
12	Catecholamine-Directed Epithelial Cell Interactions with Bacteria in the Intestinal Mucosa. Advances in Experimental Medicine and Biology, 2016, 874, 79-99.	0.8	6
13	Seeking a Mechanism for the Toxicity of Oligomeric α-Synuclein. Biomolecules, 2015, 5, 282-305.	1.8	168
14	Iron, Aging, and Neurodegeneration. Metals, 2015, 5, 2070-2092.	1.0	18
15	Prion infection in cells is abolished by a mutated manganese transporter but shows no relation to zinc. Molecular and Cellular Neurosciences, 2015, 68, 186-193.	1.0	7
16	Mucosal immunization with an attenuated Salmonella vaccine partially protects white-tailed deer from chronic wasting disease. Vaccine, 2015, 33, 726-733.	1.7	60
17	Nrf-2 regulation of prion protein expression is independent of oxidative stress. Molecular and Cellular Neurosciences, 2014, 63, 31-37.	1.0	18
18	Amyloid-β and Proinflammatory Cytokines Utilize a Prion Protein-Dependent Pathway to Activate NADPH Oxidase and Induce Cofilin-Actin Rods in Hippocampal Neurons. PLoS ONE, 2014, 9, e95995.	1.1	58

#	Article	IF	CITATIONS
19	Counter-regulation of alpha- and beta-synuclein expression at the transcriptional level. Molecular and Cellular Neurosciences, 2013, 57, 33-41.	1.0	17
20	The cellular prion protein traps Alzheimer's Aβ in an oligomeric form and disassembles amyloid fibers. FASEB Journal, 2013, 27, 1847-1858.	0.2	89
21	α-Synuclein as a ferrireductase. Biochemical Society Transactions, 2013, 41, 1513-1517.	1.6	50
22	Prion protein expression alters APP cleavage without interaction with BACE-1. Neurochemistry International, 2012, 61, 672-680.	1.9	12
23	Methionine Oxidation Perturbs the Structural Core of the Prion Protein and Suggests a Generic Misfolding Pathway. Journal of Biological Chemistry, 2012, 287, 28263-28275.	1.6	48
24	The Catalytic Redox Activity of Prion Protein–Cu ^{II} is Controlled by Metal Exchange with the Zn ^{II} –Thiolate Clusters of Zn ₇ Metallothioneinâ€3. ChemBioChem, 2012, 13, 1261-1265.	1.3	18
25	Prion protein polymerisation triggered by manganeseâ€generated prion protein seeds. Journal of Neurochemistry, 2012, 120, 177-189.	2.1	12
26	The Synucleins Are a Family of Redox-Active Copper Binding Proteins. Biochemistry, 2011, 50, 37-47.	1.2	66
27	Contribution of Individual Histidines to Prion Protein Copper Binding. Biochemistry, 2011, 50, 10781-10791.	1.2	21
28	Metal attenuating therapies in neurodegenerative disease. Expert Review of Neurotherapeutics, 2011, 11, 1717-1745.	1.4	22
29	Copper(II)-Induced Secondary Structure Changes and Reduced Folding Stability of the Prion Protein. Journal of Molecular Biology, 2011, 410, 369-382.	2.0	52
30	Metals in neurodegenerative disease. Metallomics, 2011, 3, 226.	1.0	16
31	Prions and manganese: A maddening beast. Metallomics, 2011, 3, 229-238.	1.0	40
32	Alpha-Synuclein Is a Cellular Ferrireductase. PLoS ONE, 2011, 6, e15814.	1.1	144
33	Transcriptional Regulation of the Beta-Synuclein 5′-Promoter Metal Response Element by Metal Transcription Factor-1. PLoS ONE, 2011, 6, e17354.	1.1	17
34	Oligomeric alphaâ€synuclein and its role in neuronal death. IUBMB Life, 2010, 62, 334-339.	1.5	44
35	Copper binding regulates intracellular alphaâ€synuclein localisation, aggregation and toxicity. Journal of Neurochemistry, 2010, 113, 704-714.	2.1	104
36	Metalloproteins and neuronal death. Metallomics, 2010, 2, 186-194.	1.0	30

#	Article	IF	CITATIONS
37	Role of Microglia in Age-Related Changes to the Nervous System. Scientific World Journal, The, 2009, 9, 1061-1071.	0.8	36
38	Protein Profiling of Plasma Membranes Defines Aberrant Signaling Pathways in Mantle Cell Lymphoma. Molecular and Cellular Proteomics, 2009, 8, 1501-1515.	2.5	78
39	Unique copperâ€induced oligomers mediate alphaâ€synuclein toxicity. FASEB Journal, 2009, 23, 2384-2393.	0.2	129
40	Early Onset Prion Disease from Octarepeat Expansion Correlates with Copper Binding Properties. PLoS Pathogens, 2009, 5, e1000390.	2.1	70
41	Surround optical fiber immunoassay (SOFIA): An ultra-sensitive assay for prion protein detection. Journal of Virological Methods, 2009, 159, 15-22.	1.0	34
42	Evaluation of βâ€Alanine―and GABAâ€Substituted Peptides as Inhibitors of Diseaseâ€Linked Protein Aggregation. ChemBioChem, 2009, 10, 1982-1987.	1.3	8
43	Activation and repression of prion protein expression by key regions of intron 1. Cellular and Molecular Life Sciences, 2009, 66, 3809-3820.	2.4	11
44	Dynamics of a truncated prion protein, PrP(113–231), from ¹⁵ N NMR relaxation: Order parameters calculated and slow conformational fluctuations localized to a distinct region. Protein Science, 2009, 18, 410-423.	3.1	28
45	Evaluation of Copper ²⁺ Affinities for the Prion Protein. Biochemistry, 2009, 48, 8929-8931.	1.2	40
46	Thermodynamic and Voltammetric Characterization of the Metal Binding to the Prion Protein: Insights into pH Dependence and Redox Chemistry. Biochemistry, 2009, 48, 2610-2619.	1.2	53
47	Metal binding to alpha-synuclein peptides and its contribution to toxicity. Biochemical and Biophysical Research Communications, 2009, 380, 377-381.	1.0	53
48	The effects of prion protein expression on metal metabolism. Molecular and Cellular Neurosciences, 2009, 41, 135-147.	1.0	45
49	Brain proteins that mind metals: a neurodegenerative perspective. Dalton Transactions, 2009, , 4069.	1.6	72
50	Gene regulation as a potential avenue for the treatment of neurodegenerative disorders. Expert Opinion on Drug Discovery, 2009, 4, 515-524.	2.5	0
51	Mechanisms of Prion Protein Aggregation. Protein and Peptide Letters, 2009, 16, 14-26.	0.4	12
52	Manganese Enhances Prion Protein Survival in Model Soils and Increases Prion Infectivity to Cells. PLoS ONE, 2009, 4, e7518.	1.1	50
53	Re-partitioning of Cu and Zn isotopes by modified protein expression. Geochemical Transactions, 2008, 9, 11.	1.8	30
54	Antioxidant activity related to copper binding of native prion protein. Journal of Neurochemistry, 2008, 76, 69-76.	2.1	197

#	Article	IF	CITATIONS
55	Oxidative impairment in scrapie-infected mice is associated with brain metals perturbations and altered antioxidant activities. Journal of Neurochemistry, 2008, 79, 689-698.	2.1	130
56	Alpha-synuclein and its role in metal binding: Relevance to Parkinson's disease. Journal of Neuroscience Research, 2008, 86, 496-503.	1.3	39
57	Synthesis and testing of peptides for anti-prion activity. European Journal of Medicinal Chemistry, 2008, 43, 2418-2427.	2.6	4
58	Resistance of cell lines to prion toxicity aided by phospho-ERK expression. Journal of Neurochemistry, 2008, 105, 842-852.	2.1	19
59	Elevated manganese levels in blood and CNS in human prion disease. Molecular and Cellular Neurosciences, 2008, 37, 590-598.	1.0	65
60	Raman Optical Activity and Circular Dichroism Reveal Dramatic Differences in the Influence of Divalent Copper and Manganese Ions on Prion Protein Folding. Biochemistry, 2008, 47, 2510-2517.	1.2	43
61	Manganese Binding to the Prion Protein. Journal of Biological Chemistry, 2008, 283, 12831-12839.	1.6	90
62	The chemistry of copper binding to PrP: is there sufficient evidence to elucidate a role for copper in protein function?. Biochemical Journal, 2008, 410, 237-244.	1.7	60
63	Deconvoluting the Cu2+ Binding Modes of Full-length Prion Protein*. Journal of Biological Chemistry, 2008, 283, 1870-1881.	1.6	97
64	Emergent Synchronous Bursting of Oxytocin Neuronal Network. PLoS Computational Biology, 2008, 4, e1000123.	1.5	131
65	Amyloidogenic metal-binding proteins: new investigative pathways. Biochemical Society Transactions, 2008, 36, 1299-1303.	1.6	7
66	Investigation of PrPC Metabolism and Function in Live Cells. Methods in Molecular Biology, 2008, 459, 21-34.	0.4	3
67	Modelling neurodegeneration in prion disease – applications for drug development. Expert Opinion on Drug Discovery, 2007, 2, 777-788.	2.5	1
68	Mechanistic Insights into the Cure of Prion Disease by Novel Antiprion Compounds. Journal of Virology, 2007, 81, 10729-10741.	1.5	16
69	Elevated manganese levels in blood and central nervous system occur before onset of clinical signs in scrapie and bovine spongiform encephalopathy. Journal of Animal Science, 2007, 85, 1596-1609.	0.2	49
70	NMR characterization of the pH 4 β-intermediate of the prion protein: the N-terminal half of the protein remains unstructured and retains a high degree of flexibility. Biochemical Journal, 2007, 401, 533-540.	1.7	36
71	Regulation of Prion Protein Expression by Noncoding Regions of the Prnp Gene. Journal of Molecular Biology, 2007, 368, 915-927.	2.0	17
72	Anterograde axonal transport of chicken cellular prion protein (PrPc) in vivo requires its N-terminal part. Journal of Neuroscience Research, 2007, 85, 2567-2579.	1.3	7

#	Article	IF	CITATIONS
73	Dual polarisation interferometry analysis of copper binding to the prion protein: Evidence for two folding states. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 920-927.	1.1	22
74	Ancient conserved domain proteinâ€1 binds copper and modifies its retention in cells. Journal of Neurochemistry, 2007, 103, 312-321.	2.1	13
75	Introduction: Copper and amyloid fibril formation. FEBS Journal, 2007, 274, 3755-3755.	2.2	3
76	Prion protein does not redox-silence Cu2+, but is a sacrificial quencher of hydroxyl radicals. Free Radical Biology and Medicine, 2007, 42, 79-89.	1.3	74
77	Interactions between metals and αâ€synucleinâ€fâ^'â€ffunction or artefact?. FEBS Journal, 2007, 274, 3766-37	742.2	47
78	Real-time kinetics of discontinuous and highly conformational metal-ion binding sites of prion protein. Journal of Biological Inorganic Chemistry, 2007, 12, 711-720.	1.1	29
79	Hydrogen peroxide cleavage of the prion protein generates a fragment able to initiate polymerisation of full length prion protein. International Journal of Biochemistry and Cell Biology, 2006, 38, 1429-1440.	1.2	24
80	Anterograde axonal transport of the exogenous cellular isoform of prion protein in the chick visual system. Molecular and Cellular Neurosciences, 2006, 31, 97-108.	1.0	12
81	Metallic Prions: Mining the Core of Transmissible Spongiform Encephalopathies. , 2006, , 89-114.		0
82	Mouse galectin-1 inhibits the toxicity of glutamate by modifying NR1 NMDA receptor expression. European Journal of Neuroscience, 2006, 24, 3017-3025.	1.2	29
83	Prion protein reduces both oxidative and non-oxidative copper toxicity. Journal of Neurochemistry, 2006, 98, 677-689.	2.1	35
84	Copper-dependent co-internalization of the prion protein and glypican-1. Journal of Neurochemistry, 2006, 98, 1445-1457.	2.1	32
85	High affinity copper binding by stefin B (cystatin B) and its role in the inhibition of amyloid fibrillation. FEBS Journal, 2006, 273, 4250-4263.	2.2	29
86	A Stone Guest on the Brain: Death as a Prion. , 2005, , 241-271.		0
87	An Aggregation-Specific Enzyme-Linked Immunosorbent Assay: Detection of Conformational Differences between Recombinant PrP Protein Dimers and PrP Sc Aggregates. Journal of Virology, 2005, 79, 12355-12364.	1.5	41
88	High Affinity Binding between Copper and Full-length Prion Protein Identified by Two Different Techniques. Journal of Biological Chemistry, 2005, 280, 42750-42758.	1.6	109
89	The use of peptides that pick up prions: protection or poison?. Expert Opinion on Therapeutic Patents, 2005, 15, 1287-1290.	2.4	0
90	Probing Copper2+ Binding to the Prion Protein Using Diamagnetic Nickel2+ and 1H NMR: The Unstructured N terminus Facilitates the Coordination of Six Copper2+ Ions at Physiological Concentrations. Journal of Molecular Biology, 2005, 346, 1393-1407.	2.0	148

#	Article	IF	CITATIONS
91	Copper binding is the governing determinant of prion protein turnover. Molecular and Cellular Neurosciences, 2005, 30, 186-196.	1.0	50
92	Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence. Folia Neuropathologica, 2005, 43, 229-43.	0.5	80
93	Preferential Cu2+ Coordination by His96 and His111 Induces β-Sheet Formation in the Unstructured Amyloidogenic Region of the Prion Protein. Journal of Biological Chemistry, 2004, 279, 32018-32027.	1.6	218
94	Synthesis of Analogues of Congo Red and Evaluation of Their Anti-Prion Activity. Journal of Medicinal Chemistry, 2004, 47, 5515-5534.	2.9	57
95	Prion protein is ubiquitinated after developing protease resistance in the brains of scrapie-infected mice. Journal of Pathology, 2004, 203, 603-608.	2.1	48
96	Copper(II) complexes of peptide fragments of the prion protein. Conformation changes induced by copper(II) and the binding motif in C-terminal protein region. Journal of Inorganic Biochemistry, 2004, 98, 133-143.	1.5	71
97	Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Transactions, 2004, , 1907.	1.6	326
98	BSE and vCJD cause disturbance to uric acid levels. Experimental Neurology, 2004, 190, 233-244.	2.0	14
99	Prion protein fate governed by metal binding. Biochemical and Biophysical Research Communications, 2004, 325, 1005-1012.	1.0	100
100	Role of the prion protein in copper turnover in astrocytes. Neurobiology of Disease, 2004, 15, 534-543.	2.1	73
101	Astrocytic regulation of NMDA receptor subunit composition modulates the toxicity of prion peptide PrP106–126. Molecular and Cellular Neurosciences, 2004, 25, 181-191.	1.0	16
102	Metallic prions. Biochemical Society Symposia, 2004, 71, 193-202.	2.7	13
103	Mapping the functional domain of the prion protein. FEBS Journal, 2003, 270, 3368-3376.	0.2	35
104	Prion protein expression modulates neuronal copper content. Journal of Neurochemistry, 2003, 87, 377-385.	2.1	43
105	A novel method of generating neuronal cell lines from gene-knockout mice to study prion protein membrane orientation. European Journal of Neuroscience, 2003, 18, 571-579.	1.2	24
106	Generation of Hydrogen Peroxide from Mutant Forms of the Prion Protein Fragment PrP121â^'231â€. Biochemistry, 2003, 42, 7675-7681.	1.2	45
107	Conformational exposure: a new handle on prions. Lancet, The, 2003, 362, 929-930.	6.3	0
108	Analysis of doppel protein toxicity. Molecular and Cellular Neurosciences, 2003, 23, 144-155.	1.0	41

#	Article	IF	CITATIONS
109	Copper Chelation Delays the Onset of Prion Disease. Journal of Biological Chemistry, 2003, 278, 46199-46202.	1.6	170
110	Quinacrine acts as an antioxidant and reduces the toxicity of the prion peptide PrP106-126. NeuroReport, 2003, 14, 1743-1745.	0.6	34
111	Copper and Prion Disease. , 2003, , 279-305.		1
112	Purification and preparation of prion protein: Synaptic superoxide dismutase. Methods in Enzymology, 2002, 349, 258-267.	0.4	21
113	Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochemical Journal, 2002, 362, 253-258.	1.7	156
114	Immunization Delays the Onset of Prion Disease in Mice. American Journal of Pathology, 2002, 161, 13-17.	1.9	182
115	Lack of prion protein expression results in a neuronal phenotype sensitive to stress. Journal of Neuroscience Research, 2002, 67, 211-224.	1.3	204
116	Mayhem of the multiple mechanisms: modelling neurodegeneration in prion disease. Journal of Neurochemistry, 2002, 82, 209-215.	2.1	29
117	Copper-Dependent Functions for the Prion Protein. Molecular Biotechnology, 2002, 22, 165-178.	1.3	47
118	Molecular Advances in Understanding Inherited Prion Diseases. Molecular Neurobiology, 2002, 25, 287-302.	1.9	8
119	Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochemical Journal, 2002, 362, 253.	1.7	119
120	Induction of HO-1 and NOS in Doppel-Expressing Mice Devoid of PrP: Implications for Doppel Function. Molecular and Cellular Neurosciences, 2001, 17, 768-775.	1.0	62
121	Prion and prejudice: normal protein and the synapse. Trends in Neurosciences, 2001, 24, 85-90.	4.2	177
122	Astrocytes Regulate N-Methyl-d-aspartate Receptor Subunit Composition Increasing Neuronal Sensitivity to Excitotoxicity. Journal of Biological Chemistry, 2001, 276, 22446-22452.	1.6	30
123	Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. Journal of Neurochemistry, 2001, 76, 565-572.	2.1	163
124	Inhibition of tumour necrosis factor-α (TNFα)-induced NF-κB p52 converts the metabolic effects of microglial-derived TNFα on mouse cerebellar neurones to neurotoxicity. Journal of Neurochemistry, 2001, 76, 1431-1438.	2.1	26
125	Aberrant metal binding by prion protein in human prion disease. Journal of Neurochemistry, 2001, 78, 1400-1408.	2.1	178
126	Prion Protein Peptide Neurotoxicity Can Be Mediated by Astrocytes. Journal of Neurochemistry, 2001, 73, 1105-1113.	2.1	94

#	Article	IF	CITATIONS
127	Toxicity of novel C-terminal prion protein fragments and peptides harbouring disease-related C-terminal mutations. FEBS Journal, 2001, 268, 6155-6164.	0.2	30
128	Microglia and prion disease. Microscopy Research and Technique, 2001, 54, 71-80.	1.2	89
129	Prion Protein Peptide: Agents of Death for Neurons. , 2001, 59, 51-70.		2
130	Altered toxicity of the prion protein peptide PrP106‒126 carrying the Ala117→Val mutation. Biochemical Journal, 2000, 346, 785.	1.7	9
131	PrPSc-like prion protein peptide inhibits the function of cellular prion protein. Biochemical Journal, 2000, 352, 511.	1.7	39
132	Altered toxicity of the prion protein peptide PrP106–126 carrying the Ala117→Val mutation. Biochemical Journal, 2000, 346, 785-791.	1.7	36
133	Effect of copper on recombinant mouse prion protein. Biochemical Society Transactions, 2000, 28, A36-A36.	1.6	0
134	Functional and structural differences between the prion protein from two alleles prnpa and prnpb of mouse. FEBS Journal, 2000, 267, 2452-2459.	0.2	19
135	Copper Refolding of Prion Protein. Biochemical and Biophysical Research Communications, 2000, 276, 1217-1224.	1.0	56
136	Prion Protein Peptides: Optimal Toxicity and Peptide Blockade of Toxicity. Molecular and Cellular Neurosciences, 2000, 15, 66-78.	1.0	85
137	A Model for the Mechanism of Astrogliosis in Prion Disease. Molecular and Cellular Neurosciences, 2000, 16, 221-232.	1.0	42
138	PrPSc-like prion protein peptide inhibits the function of cellular prion protein. Biochemical Journal, 2000, 352, 511-518.	1.7	57
139	Cellular uptake of the prion protein fragment PrP106-126 in vitro. Journal of Neurocytology, 1999, 28, 149-159.	1.6	36
140	Astrocytic glutamate uptake and prion protein expression. , 1999, 25, 282-292.		70
141	Prion protein expression aids cellular uptake and veratridine-induced release of copper. , 1999, 58, 717-725.		95
142	Comment on: Neurotoxicity of prion peptide 106-126 not confirmed. FEBS Letters, 1999, 460, 559-560.	1.3	11
143	Neurons Depend on Astrocytes in a Coculture System for Protection from Glutamate Toxicity. Molecular and Cellular Neurosciences, 1999, 13, 379-389.	1.0	64
144	Selective Oxidation of Methionine Residues in Prion Proteins. Biochemical and Biophysical Research Communications, 1999, 259, 352-355.	1.0	81

#	Article	IF	CITATIONS
145	Normal prion protein has an activity like that of superoxide dismutase. Biochemical Journal, 1999, 344, 1.	1.7	205
146	Normal prion protein has an activity like that of superoxide dismutase. Biochemical Journal, 1999, 344, 1-5.	1.7	461
147	Prion protein expression in muscle cells and toxicity of a prion protein fragment. European Journal of Cell Biology, 1998, 75, 29-37.	1.6	61
148	Prion protein fragment interacts with PrP-deficient cells. Journal of Neuroscience Research, 1998, 52, 260-267.	1.3	37
149	Prion protein-overexpressing cells show altered response to a neurotoxic prion protein peptide. Journal of Neuroscience Research, 1998, 54, 331-340.	1.3	30
150	Cellular effects of a neurotoxic prion protein peptide are related to its ?-sheet content. Neuroscience Research Communications, 1998, 23, 119-128.	0.2	23
151	A Prion Protein Fragment Primes Type 1 Astrocytes to Proliferation Signals from Microglia. Neurobiology of Disease, 1998, 4, 410-422.	2.1	44
152	Microglial expression of the prion protein. NeuroReport, 1998, 9, 1425-1429.	0.6	75
153	Prion protein expression and superoxide dismutase activity. Biochemical Journal, 1998, 334, 423-429.	1.7	245
154	Effects of Copper on Survival of Prion Protein Knockout Neurons and Glia. Journal of Neurochemistry, 1998, 70, 1686-1693.	2.1	143
155	Role of Microglia in Neuronal Cell Death in Prion Disease. Brain Pathology, 1998, 8, 449-457.	2.1	209
156	Prion Protein-Deficient Cells Show Altered Response to Oxidative Stress Due to Decreased SOD-1 Activity. Experimental Neurology, 1997, 146, 104-112.	2.0	398
157	Effects of oxidative stress on prion protein expression in pc12 cells. International Journal of Developmental Neuroscience, 1997, 15, 961-972.	0.7	103
158	PrP and β-Amyloid Fragments Activate Different Neurotoxic Mechanisms in Cultured Mouse Cells. European Journal of Neuroscience, 1997, 9, 1162-1169.	1.2	60
159	The cellular prion protein binds copper in vivo. Nature, 1997, 390, 684-687.	13.7	1,170
160	A neurotoxic prion protein fragment enhances proliferation of microglia but not astrocytes in culture. , 1996, 18, 59-67.		82
161	Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature, 1996, 380, 345-347.	13.7	506
162	Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. NeuroReport, 1994, 5, 2057-2060.	0.6	199