Qian Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2765508/publications.pdf

Version: 2024-02-01

	109321	114465
4,286	35	63
citations	h-index	g-index
76	7.0	5040
/6	76	5042
docs citations	times ranked	citing authors
	citations 76	4,286 35 citations h-index 76 76

#	Article	IF	CITATIONS
1	Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 226-231.	4.7	359
2	Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China. Journal of Hazardous Materials, 2014, 277, 69-75.	12.4	223
3	Strong impact of anthropogenic contamination on the coâ€occurrence patterns of a riverine microbial community. Environmental Microbiology, 2017, 19, 4993-5009.	3.8	213
4	Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environmental Pollution, 2016, 208, 371-381.	7.5	182
5	Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicology and Environmental Safety, 2017, 136, 31-39.	6.0	163
6	Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China. Water Research, 2017, 123, 655-667.	11.3	156
7	Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation. Journal of Hazardous Materials, 2017, 321, 47-53.	12.4	141
8	Fate and mass balance of bisphenol analogues in wastewater treatment plants in Xiamen City, China. Environmental Pollution, 2017, 225, 542-549.	7.5	138
9	Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge. Water Research, 2016, 88, 897-903.	11.3	137
10	PPCPs in Jiulong River estuary (China): Spatiotemporal distributions, fate, and their use as chemical markers of wastewater. Chemosphere, 2016, 150, 596-604.	8.2	127
11	Biodegradation of sulfamethoxazole in bacteria from three different origins. Journal of Environmental Management, 2018, 206, 93-102.	7.8	121
12	Dissipation of antibiotics by microalgae: Kinetics, identification of transformation products and pathways. Journal of Hazardous Materials, 2020, 387, 121985.	12.4	121
13	Heavy metal removal from sludge with organic chelators: Comparative study of N, N-bis(carboxymethyl) glutamic acid and citric acid. Journal of Environmental Management, 2016, 166, 341-347.	7.8	113
14	Occurrence, spatial variation and risk assessment of pharmaceuticals and personal care products in urban wastewater, canal surface water, and their sediments: A case study of Lahore, Pakistan. Science of the Total Environment, 2019, 688, 653-663.	8.0	105
15	Monitoring, mass balance and fate of pharmaceuticals and personal care products in seven wastewater treatment plants in Xiamen City, China. Journal of Hazardous Materials, 2018, 354, 81-90.	12.4	98
16	Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles. Chemosphere, 2014, 103, 80-85.	8.2	94
17	Pharmaceuticals and personal care products in a mesoscale subtropical watershed and their application as sewage markers. Journal of Hazardous Materials, 2014, 280, 696-705.	12.4	91
18	Removal of silver nanoparticles by coagulation processes. Journal of Hazardous Materials, 2013, 261, 414-420.	12.4	80

#	Article	IF	CITATIONS
19	Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan. Environmental Toxicology and Pharmacology, 2016, 42, 16-22.	4.0	78
20	Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C. Scientific Reports, 2016, 6, 21965.	3.3	73
21	Transformation of Bisphenol A and Alkylphenols by Ammonia-Oxidizing Bacteria through Nitration. Environmental Science & Enviro	10.0	70
22	Simultaneous removal of amoxicillin, ampicillin and penicillin by clay supported Fe/Ni bimetallic nanoparticles. Environmental Pollution, 2018, 236, 562-569.	7.5	69
23	Selective and fast recovery of rare earth elements from industrial wastewater by porous \hat{l}^2 -cyclodextrin and magnetic \hat{l}^2 -cyclodextrin polymers. Water Research, 2020, 181, 115857.	11.3	66
24	Decolorization of azo dye methyl red by suspended and co-immobilized bacterial cells with mediators anthraquinone-2,6-disulfonate and Fe3O4 nanoparticles. International Biodeterioration and Biodegradation, 2016, 112, 88-97.	3.9	65
25	Removal of co-contaminants Cu (II) and nitrate from aqueous solution using kaolin-Fe/Ni nanoparticles. Chemical Engineering Journal, 2014, 244, 19-26.	12.7	62
26	Comparative studies of aerobic and anaerobic biodegradation of methylparaben and propylparaben in activated sludge. Ecotoxicology and Environmental Safety, 2017, 138, 25-31.	6.0	54
27	Evaluation of Sulfadiazine Degradation in Three Newly Isolated Pure Bacterial Cultures. PLoS ONE, 2016, 11, e0165013.	2.5	52
28	Simultaneous analysis of 45 pharmaceuticals and personal care products in sludge by matrix solid-phase dispersion and liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 4953-4964.	3.7	48
29	Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C. Chemosphere, 2016, 144, 292-296.	8.2	48
30	Homogeneous selection drives antibiotic resistome in two adjacent sub-watersheds, China. Journal of Hazardous Materials, 2020, 398, 122820.	12.4	46
31	Occurrence, geochemical fractionation, and environmental risk assessment of major and trace elements in sewage sludge. Journal of Environmental Management, 2019, 249, 109427.	7.8	44
32	Occurrence and fate of bisphenol A transformation products, bisphenol A monomethyl ether and bisphenol A dimethyl ether, in wastewater treatment plants and surface water. Journal of Hazardous Materials, 2018, 357, 401-407.	12.4	42
33	Occurrence and fate of triclosan and triclocarban in a subtropical river and its estuary. Marine Pollution Bulletin, 2014, 88, 383-388.	5.0	41
34	Removal of environmental estrogens by bacterial cell immobilization technique. Chemosphere, 2016, 144, 607-614.	8.2	41
35	Biotransformation of estrone, $17\hat{1}^2$ -estradiol and $17\hat{1}^\pm$ -ethynylestradiol by four species of microalgae. Ecotoxicology and Environmental Safety, 2019, 180, 723-732.	6.0	38
36	Speciation of metal–EDTA complexes by flow injection analysis with electrospray ionization mass spectrometry and ion chromatography with inductively coupled plasma mass spectrometry. Journal of Separation Science, 2008, 31, 3796-3802.	2.5	34

#	Article	IF	CITATIONS
37	Occurrence, seasonal variation and risk evaluation of selected endocrine disrupting compounds and their transformation products in Jiulong river and estuary, China. Marine Pollution Bulletin, 2019, 145, 370-376.	5.0	34
38	Monitoring and mass balance analysis of endocrine disrupting compounds and their transformation products in an anaerobic-anoxic-oxic wastewater treatment system in Xiamen, China. Chemosphere, 2018, 204, 170-177.	8.2	32
39	Highly Selective Recovery of Lanthanides by Using a Layered Vanadate with Acid and Radiation Resistance. Angewandte Chemie - International Edition, 2020, 59, 1878-1883.	13.8	31
40	Determination of 38 pharmaceuticals and personal care products in water by lyophilization combined with liquid chromatography-tandem mass spectrometry. Analytical Methods, 2021, 13, 299-310.	2.7	30
41	Domestic wastewater causes nitrate pollution in an agricultural watershed, China. Science of the Total Environment, 2022, 823, 153680.	8.0	30
42	Simultaneous analysis of multiclass antibiotic residues in complex environmental matrices by liquid chromatography with tandem quadrupole mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1145, 122103.	2.3	29
43	Silver nanoparticles induce oocyte maturation in zebrafish (Danio rerio). Chemosphere, 2017, 170, 51-60.	8.2	28
44	Bisphenol A attenuation in natural microcosm: Contribution of ecological components and identification of transformation pathways through stable isotope tracing. Journal of Hazardous Materials, 2020, 385, 121584.	12.4	28
45	Spatial autocorrelation and temporal variation of contaminants of emerging concern in a typical urbanizing river. Water Research, 2022, 212, 118120.	11.3	27
46	Degradation of microcystin-LR using functional clay supported bimetallic Fe/Pd nanoparticles based on adsorption and reduction. Chemical Engineering Journal, 2014, 255, 55-62.	12.7	25
47	Effect of a weak magnetic field on triclosan removal using zero-valent iron under aerobic and anaerobic conditions. Chemical Engineering Journal, 2018, 346, 24-33.	12.7	24
48	Recovery and purification of rare earth elements from wastewater and sludge using a porous magnetic composite of \hat{l}^2 -cyclodextrin and silica doped with PC88A. Separation and Purification Technology, 2021, 266, 118589.	7.9	24
49	Determination of Commonly Used Pharmaceuticals in Hospital Waste of Pakistan and Evaluation of Their Ecological Risk Assessment. Clean - Soil, Air, Water, 2017, 45, 1500392.	1.1	23
50	Contribution of biotic and abiotic factors in the natural attenuation of sulfamethoxazole: A path analysis approach. Science of the Total Environment, 2018, 633, 1217-1226.	8.0	23
51	Ultrafast and selective uptake of Eu3+ from aqueous solutions by two layered sulfides. Chemical Engineering Journal, 2021, 420, 127613.	12.7	23
52	Strong impact of micropollutants on prokaryotic communities at the horizontal but not vertical scales in a subtropical reservoir, China. Science of the Total Environment, 2020, 721, 137767.	8.0	19
53	Simultaneous Analysis of Multiclass Contaminants of Emerging Concern in Sediments by Liquid Chromatography with Tandem Quadrupole Mass Spectrometry. Environmental Toxicology and Chemistry, 2019, 38, 1409-1422.	4.3	18
54	Assessment of the occurrence, spatiotemporal variations and geoaccumulation of fifty-two inorganic elements in sewage sludge: A sludge management revisit. Scientific Reports, 2017, 7, 5698.	3.3	16

#	Article	IF	Citations
55	Integrated assessment of major and trace elements in surface and core sediments from an urban lagoon, China: Potential ecological risks and influencing factors. Marine Pollution Bulletin, 2021, 170, 112651.	5.0	16
56	Identification of Enantiomeric Byproducts During Microalgae-Mediated Transformation of Metoprolol by MS/MS Spectrum Based Networking. Frontiers in Microbiology, 2018, 9, 2115.	3.5	15
57	Tracking microeukaryotic footprint in a peri-urban watershed, China through machine-learning approaches. Science of the Total Environment, 2022, 806, 150401.	8.0	15
58	On-Line SPE Coupled with LC–APCI–MS for the Determination of Trace Explosives in Water. Chromatographia, 2011, 73, 631-637.	1.3	14
59	Microalgal mediated antibiotic co-metabolism: Kinetics, transformation products and pathways. Chemosphere, 2022, 292, 133438.	8.2	14
60	Induced aging, structural change, and adsorption behavior modifications of microplastics by microalgae. Environment International, 2022, 166, 107382.	10.0	13
61	Rare earth and precious elements in the urban sewage sludge and lake surface sediments under anthropogenic influence in the Republic of Benin. Environmental Monitoring and Assessment, 2017, 189, 625.	2.7	10
62	Characterization and Performance of Lactate-Feeding Consortia for Reductive Dechlorination of Trichloroethene. Microorganisms, 2021, 9, 751.	3.6	10
63	Repeated introduction of micropollutants enhances microbial succession despite stable degradation patterns. ISME Communications, 2022, 2, .	4.2	10
64	Onâ€line solidâ€phase extraction coupled with liquid chromatography/electrospray ionization mass spectrometry for the determination of trace tributyltin and triphenyltin in water samples. Rapid Communications in Mass Spectrometry, 2009, 23, 3795-3802.	1.5	9
65	Diagnosis and ecotoxicological risk assessment of 49 elements in sludge from wastewater treatment plants of Chongqing and Xiamen cities, China. Environmental Science and Pollution Research, 2018, 25, 29006-29016.	5.3	9
66	Elemental Contaminants in Surface Sediments from Jiulong River Estuary, China: Pollution Level and Ecotoxicological Risk Assessment. Water (Switzerland), 2020, 12, 1640.	2.7	9
67	Continuous antibiotic attenuation in algal membrane photobioreactor: Performance and kinetics. Journal of Hazardous Materials, 2022, 434, 128910.	12.4	9
68	A closed-loop system to recycle rare earth elements from industrial sludge using green leaching agents and porous \hat{l}^2 -cyclodextrin polymer composite. Resources, Conservation and Recycling, 2022, 180, 106152.	10.8	7
69	Reduction of polyatomic interferences during ion-chromatographic speciation of metal ions via their EDTA complexes along with ICP-MS detection using an octopole reaction system. Mikrochimica Acta, 2010, 169, 41-47.	5.0	6
70	Reconciliation of Spatiotemporal Influences on Two-Dimensional Distribution and Fate of Emerging Contaminants in a Subtropical River. ACS ES&T Water, 0, , .	4.6	6
71	Simultaneous determination of cyromazine, melamine and their biodegradation products by ion-pair high-performance liquid chromatography. International Journal of Environmental Analytical Chemistry, 2014, 94, 1173-1182.	3.3	5
72	Predicting Microbial Species in a River Based on Physicochemical Properties by Bio-Inspired Metaheuristic Optimized Machine Learning. Sustainability, 2019, 11, 6889.	3.2	5

#	Article	lF	CITATIONS
73	Determination of nine emerging pesticides at trace level in aqueous samples using fully automated on-line solid phase extraction coupled with liquid chromatography-mass spectrometry. International Journal of Environmental Analytical Chemistry, 2013, 93, 970-983.	3.3	3
74	Changes in Wastewater Treatment Performance and the Microbial Community during the Bioaugmentation of a Denitrifying Pseudomonas Strain in the Low Carbon–Nitrogen Ratio Sequencing Batch Reactor. Water (Switzerland), 2022, 14, 540.	2.7	2