Vesna Žegarac Leskovar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2765475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An approach in architectural design of energy-efficient timber buildings with a focus on the optimal glazing size in the south-oriented façade. Energy and Buildings, 2011, 43, 3410-3418.	3.1	81
2	Influence of the building shape on the energy performance of timber-glass buildings in different climatic conditions. Energy, 2016, 108, 201-211.	4.5	51
3	Environmental impact assessment of building envelope components for low-rise buildings. Energy, 2018, 163, 501-512.	4.5	46
4	Influence of the orientation on the optimal glazing size for passive houses in different European climates (for non-cardinal directions). Solar Energy, 2019, 189, 15-25.	2.9	30
5	Influence of the building shape on the energy performance of timber-glass buildings located in warm climatic regions. Energy, 2018, 149, 496-504.	4.5	29
6	Comparative assessment of shape related cross-laminated timber building typologies focusing on environmental performance. Journal of Cleaner Production, 2019, 216, 482-494.	4.6	24
7	A Review of Architectural and Structural Design Typologies of Multi-Storey Timber Buildings in Europe. Forests, 2021, 12, 757.	0.9	20
8	Use of sensitivity analysis for a determination of dominant design parameters affecting energy efficiency of timber buildings in different climates. Energy for Sustainable Development, 2021, 63, 86-102.	2.0	20
9	Design Approach for the Optimal Model of an Energy-Efficient Timber Building with Enlarged Glazing Surface on the South Façade. Journal of Asian Architecture and Building Engineering, 2012, 11, 71-78.	1.2	16
10	Application of the timber-glass upgrade module for energy refurbishment of the existing energy-inefficient multi-family buildings. Energy and Buildings, 2016, 116, 362-375.	3.1	16
11	Embodied energy and GHG emissions of residential multi-storey timber buildings by height – A case with structural connectors and mechanical fasteners. Energy and Buildings, 2021, 252, 111387.	3.1	15
12	Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia. Energy, 2014, 77, 57-65.	4.5	13
13	Design parameters of the timber-glass upgrade module and the existing building: Impact on the energy-efficient refurbishment process. Energy, 2018, 162, 1125-1138.	4.5	10
14	Evaluation of a structural epoxy adhesive for timber-glass bonds under shear loading and different environmental conditions. International Journal of Adhesion and Adhesives, 2019, 95, 102425.	1.4	10
15	Practical Impact of the COVID-19 Pandemic on Indoor Air Quality and Thermal Comfort in Kindergartens. A Case Study of Slovenia. International Journal of Environmental Research and Public Health, 2021, 18, 9712.	1.2	10
16	Energy-Efficient Timber-Glass Houses. Green Energy and Technology, 2013, , .	0.4	7
17	Development of the timber-glass upgrade module for the purpose of its installation on energy-inefficient buildings in the refurbishment process. Energy Efficiency, 2017, 10, 973-988.	1.3	6
18	Development of an Innovative Approach for the Renovation of Timber Floors with the Application of CLT Panels and Structural Glass Strips. International Journal of Architectural Heritage, 2021, 15, 627-643.	1.7	6

Vesna Žegarac Leskovar

#	Article	IF	CITATIONS
19	Renovation of timber floors with structural glass: Structural and environmental performance. Journal of Building Engineering, 2021, 38, 102149.	1.6	6
20	Integrative Approach to Comprehensive Building Renovations. Green Energy and Technology, 2019, , .	0.4	5
21	Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort. Applied Energy, 2020, 270, 115173.	5.1	5
22	Novel composite connection for timber–glass composite structures. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	1.9	3
23	APPROACH TO REFURBISHMENT OF TIMBER PRESCHOOL BUILDINGS WITH A VIEW ON ENERGY AND ECONOMIC EFFICIENCY. Journal of Civil Engineering and Management, 2019, 25, 27-40.	1.9	3
24	Strengthening of old timber floor joists with cross-laminated timber panels and tempered glass strips. Construction and Building Materials, 2021, 298, 123841.	3.2	2
25	Thermal Comfort and Indoor Air Quality after a Partially Energy-efficient Renovation of a Prefabricated Concrete Kindergarten Constructed in 1980's in Slovenia. Prostor, 2020, 28, 346-359.	0.0	2
26	Scientific Research Related to Building Renovation. Green Energy and Technology, 2019, , 69-159.	0.4	1
27	Is There Any Relation between the Architectural Characteristics of Kindergartens and the Spread of the New Coronavirus in Them?—A Case Study of Slovenia. Sustainability, 2020, 12, 10363.	1.6	0
28	Parametric Investigation On The Influence Of The Building Shape Factor On The Energy Demand For Heating And Cooling In Timber-Glass Buildings. , 2013, , .		0
29	Comparison of Building Materials for Low-Rise Buildings Based on Environmental Footprint. , 0, , .		0
30	Renovation Process Methodology. Green Energy and Technology, 2019, , 35-67.	0.4	0
31	Sustainable Rehabilitation in Architecture and Urban Development. Springer Series in Geomechanics and Geoengineering, 2021, , 257-272.	0.0	0