
Gorka Orive

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2765119/publications.pdf Version: 2024-02-01

CODEA ODIVE

#	Article	IF	CITATIONS
1	The future of psychiatry should be One Health. Reviews on Environmental Health, 2023, 38, 399-400.	2.4	4
2	Applying Immunomodulation to Promote Longevity of Immunoisolated Pancreatic Islet Grafts. Tissue Engineering - Part B: Reviews, 2022, 28, 129-140.	4.8	9
3	Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discovery Today, 2022, 27, 436-455.	6.4	87
4	Injectable and adhesive hydrogels for dealing with wounds. Expert Opinion on Biological Therapy, 2022, 22, 519-533.	3.1	13
5	Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer. Journal of Advanced Research, 2022, 39, 237-255.	9.5	33
6	Emerging strategies for beta cell transplantation to treat diabetes. Trends in Pharmacological Sciences, 2022, 43, 221-233.	8.7	17
7	Antibacterial Activity of Small Molecules Which Eradicate Methicillin-Resistant Staphylococcus aureus Persisters. Frontiers in Microbiology, 2022, 13, 823394.	3.5	12
8	The 3D Bioprinted Scaffolds for Wound Healing. Pharmaceutics, 2022, 14, 464.	4.5	35
9	Exploring nano-enabled CRISPR-Cas-powered strategies for efficient diagnostics and treatment of infectious diseases. Journal of Nanostructure in Chemistry, 2022, 12, 833-864.	9.1	31
10	Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opinion on Drug Delivery, 2022, 19, 355-382.	5.0	41
11	Composite alginate-gelatin hydrogels incorporating PRGF enhance human dental pulp cell adhesion, chemotaxis and proliferation. International Journal of Pharmaceutics, 2022, 617, 121631.	5.2	10
12	Pharmaceutical Simplification: Killing Two Birds with One Stone. Environmental Science & Technology, 2022, 56, 3-3.	10.0	5
13	Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. Water Research, 2022, 218, 118451.	11.3	52
14	Environmental risk of pharmaceuticals: Let us look at the whole package. British Journal of Clinical Pharmacology, 2022, 88, 3918-3919.	2.4	2
15	Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines. , 2022, 135, 212726.		12
16	Saliva is a Good Candidate to be the New Gold-Standard Sample for Neurodegenerative Diseases. Journal of Alzheimer's Disease, 2022, , 1-5.	2.6	4
17	Lactoferrin as Immune-Enhancement Strategy for SARS-CoV-2 Infection in Alzheimer's Disease Patients. Frontiers in Immunology, 2022, 13, 878201.	4.8	5
18	Use of illicit drugs, alcohol and tobacco in Spain and Portugal during the COVID-19 crisis in 2020 as measured by wastewater-based epidemiology. Science of the Total Environment, 2022, 836, 155697.	8.0	22

#	Article	IF	CITATIONS
19	Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics, 2022, 14, 1177.	4.5	63
20	Nanoclay-reinforced HA/alginate scaffolds as cell carriers and SDF-1 delivery-platforms for bone tissue engineering. International Journal of Pharmaceutics, 2022, 623, 121895.	5.2	4
21	Greening the pharmacy. Science, 2022, 377, 259-260.	12.6	23
22	Combinatorial fluorapatite-based scaffolds substituted with strontium, magnesium and silicon ions for mending bone defects. Materials Science and Engineering C, 2021, 120, 111611.	7.3	20
23	Cell microencapsulation technologies for sustained drug delivery: Clinical trials and companies. Drug Discovery Today, 2021, 26, 852-861.	6.4	11
24	Rational use of drugs as a source control measure to fight drug pollution. Journal of Hazardous Materials, 2021, 410, 124664.	12.4	3
25	Standardizing salivary lactoferrin measurements to obtain a robust diagnostic biomarker for Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12173.	2.4	5
26	PDX-Derived Ewing's Sarcoma Cells Retain High Viability and Disease Phenotype in Alginate Encapsulated Spheroid Cultures. Cancers, 2021, 13, 879.	3.7	6
27	Venlafaxine and desvenlafaxine to be included in the surface water Watch List. Australian and New Zealand Journal of Psychiatry, 2021, 55, 1112-1112.	2.3	3
28	Cost-effectiveness analysis of text messaging to support health advice for smoking cessation. Cost Effectiveness and Resource Allocation, 2021, 19, 9.	1.5	15
29	Redefining the "rational use of medicines― Sustainable Chemistry and Pharmacy, 2021, 20, 100381.	3.3	9
30	Nanoclay Reinforced Biomaterials for Mending Musculoskeletal Tissue Disorders. Advanced Healthcare Materials, 2021, 10, e2100217.	7.6	23
31	Platelet-rich therapies as an emerging platform for regenerative medicine. Expert Opinion on Biological Therapy, 2021, 21, 1603-1608.	3.1	1
32	lvermectin & COVID-19: Let's keep a One Health perspective. Sustainable Chemistry and Pharmacy, 2021, 21, 100438.	3.3	4
33	Cell microencapsulation technologies for sustained drug delivery: Latest advances in efficacy and biosafety. Journal of Controlled Release, 2021, 335, 619-636.	9.9	31
34	Environmental contamination by pet pharmaceuticals: A hidden problem. Science of the Total Environment, 2021, 788, 147827.	8.0	9
35	Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydrate Polymers, 2021, 272, 118491.	10.2	100
36	Camptothecin's journey from discovery to WHO Essential Medicine: Fifty years of promise. European Journal of Medicinal Chemistry, 2021, 223, 113639.	5.5	63

#	Article	IF	CITATIONS
37	AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: Bioimaging, drug delivery and disease treatment. Coordination Chemistry Reviews, 2021, 447, 214135.	18.8	59
38	Healthy and diseased <i>in vitro</i> models of vascular systems. Lab on A Chip, 2021, 21, 641-659.	6.0	18
39	Environmental pollution with psychiatric drugs. World Journal of Psychiatry, 2021, 11, 791-804.	2.7	12
40	3D-Printed Coaxial Hydrogel Patches with Mussel-Inspired Elements for Prolonged Release of Gemcitabine. Polymers, 2021, 13, 4367.	4.5	7
41	Plasma rich in growth factors for the treatment of dry eye from patients with graft versus host diseases. European Journal of Ophthalmology, 2020, 30, 94-103.	1.3	24
42	Potential Effect of Plasma Rich in Growth Factors-Endoret in Stromal Wound Healing in Additive Surgery. Ophthalmic Research, 2020, 63, 203-212.	1.9	4
43	A New Era for Cyborg Science Is Emerging: The Promise of Cyborganic Beings. Advanced Healthcare Materials, 2020, 9, e1901023.	7.6	11
44	Towards brain-tissue-like biomaterials. Nature Communications, 2020, 11, 3423.	12.8	71
45	Plasma Rich in Growth Factors for the Treatment of Cicatrizing Conjunctivitis. Clinical Ophthalmology, 2020, Volume 14, 1619-1627.	1.8	7
46	Decreased salivary lactoferrin levels are specific to Alzheimer's disease. EBioMedicine, 2020, 57, 102834.	6.1	59
47	Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 955.	4.1	32
48	Decreased salivary lactoferrin levels are specific to Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e042621.	0.8	1
49	Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. Science of the Total Environment, 2020, 732, 139298.	8.0	130
50	Hacking Human Beings with Machine Biology to Increase Lifespan. Trends in Biotechnology, 2020, 38, 1312-1315.	9.3	0
51	Do we really need to invoke heroic measures for early SARS-CoV-2 outbreak detection?. European Journal of Epidemiology, 2020, 35, 613-614.	5.7	3
52	It's about time healthcare professionals and academics start thinking about drug pollution. Sustainable Chemistry and Pharmacy, 2020, 16, 100278.	3.3	5
53	Cell-laden alginate hydrogels for the treatment of diabetes. Expert Opinion on Drug Delivery, 2020, 17, 1113-1118.	5.0	9
54	Multifunctional Antimicrobial Nanofiber Dressings Containing Îμ-Polylysine for the Eradication of Bacterial Bioburden and Promotion of Wound Healing in Critically Colonized Wounds. ACS Applied Materials & Interfaces, 2020, 12, 15989-16005.	8.0	69

#	Article	IF	CITATIONS
55	Drug pollution and pharmacotherapy in psychiatry: A "platypus―in the room. European Psychiatry, 2020, 63, e33.	0.2	14
56	Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics, 2020, 12, 288.	4.5	248
57	Mass drug administration: time to consider drug pollution?. Lancet, The, 2020, 395, 1112-1113.	13.7	14
58	Clinical Applications of Cell Encapsulation Technology. Methods in Molecular Biology, 2020, 2100, 473-491.	0.9	9
59	Virus, bats and drugs. Reviews on Environmental Health, 2020, 35, 301-302.	2.4	2
60	Effectiveness of mobile applications to quit smoking: Systematic review and meta-analysis. Tobacco Prevention and Cessation, 2020, 6, 1-11.	0.4	12
61	Monitoring implantable immunoisolation devices with intrinsic fluorescence of genipin. Journal of Biophotonics, 2019, 12, e201800170.	2.3	4
62	Advances in cell-laden hydrogels for delivering therapeutics. Expert Opinion on Biological Therapy, 2019, 19, 1219-1222.	3.1	3
63	Selfâ€Healable Hydrogels: Selfâ€Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering? (Adv.) Tj ET	Qq1 <u>1</u> 0.78	4314 rgBT (
64	Can 4D bioprinting revolutionize drug development?. Expert Opinion on Drug Discovery, 2019, 14, 953-956.	5.0	22
65	Superbugs but no drugs: steps in averting a post-antibiotic era. Drug Discovery Today, 2019, 24, 2225-2228.	6.4	25
66	Inflammation-triggered local drug release ameliorates colitis by inhibiting dendritic cell migration and Th1/Th17 differentiation. Journal of Controlled Release, 2019, 316, 138-149.	9.9	31
67	Selfâ€Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?. Advanced Science, 2019, 6, 1801664.	11.2	314
68	Quantum dots in biomedical applications. Acta Biomaterialia, 2019, 94, 44-63.	8.3	310
69	Protective Action of Linear Polyethylenimine against <i>Staphylococcus aureus</i> Colonization and Exaggerated Inflammation <i>in Vitro</i> and <i>in Vivo</i> ACS Infectious Diseases, 2019, 5, 1411-1422.	3.8	8
70	Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials, 2019, 214, 119214.	11.4	92
71	3D Bioprinting in Skeletal Muscle Tissue Engineering. Small, 2019, 15, e1805530.	10.0	192
72	Recent advances in gelatin-based therapeutics. Expert Opinion on Biological Therapy, 2019, 19, 773-779.	3.1	85

#	Article	lF	CITATIONS
73	Engineering Hydrogels beyond a Hydrated Network. Advanced Healthcare Materials, 2019, 8, e1900038.	7.6	8
74	Enzymatic crosslinked gelatin 3D scaffolds for bone tissue engineering. International Journal of Pharmaceutics, 2019, 562, 151-161.	5.2	46
75	Pectin Methacrylate (PEMA) and Gelatin-Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials. ACS Applied Materials & Interfaces, 2019, 11, 12283-12297.	8.0	61
76	Type 1 Diabetes Mellitus reversal via implantation of magnetically purified microencapsulated pseudoislets. International Journal of Pharmaceutics, 2019, 560, 65-77.	5.2	12
77	Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Delivery in Type 1 Diabetes Mellitus. Pharmaceutics, 2019, 11, 597.	4.5	56
78	Force spectroscopy-based simultaneous topographical and mechanical characterization to study polymer-to-polymer interactions in coated alginate microspheres. Scientific Reports, 2019, 9, 20112.	3.3	9
79	Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering. ACS Applied Materials & Interfaces, 2019, 11, 47771-47784.	8.0	40
80	Hyaluronic acid enhances cell survival of encapsulated insulin-producing cells in alginate-based microcapsules. International Journal of Pharmaceutics, 2019, 557, 192-198.	5.2	34
81	Hyaluronic Acid Promotes Differentiation of Mesenchymal Stem Cells from Different Sources toward Pancreatic Progenitors within Three-Dimensional Alginate Matrixes. Molecular Pharmaceutics, 2019, 16, 834-845.	4.6	15
82	Combating Microbial Contamination with Robust Polymeric Nanofibers: Elemental Effect on the Mussel-Inspired Cross-Linking of Electrospun Gelatin. ACS Applied Bio Materials, 2019, 2, 807-823.	4.6	13
83	3D cell-laden polymers to release bioactive products in the eye. Progress in Retinal and Eye Research, 2019, 68, 67-82.	15.5	15
84	Engineering a Clinically Translatable Bioartificial Pancreas to Treat Type I Diabetes. Trends in Biotechnology, 2018, 36, 445-456.	9.3	62
85	Microencapsulated macrophages releases conditioned medium able to prevent epithelial to mesenchymal transition. Drug Delivery, 2018, 25, 91-101.	5.7	3
86	Plasma rich in growth factors membrane as coadjuvant treatment in the surgery of ocular surface disorders. Medicine (United States), 2018, 97, e0242.	1.0	25
87	Treatment of patients with neurotrophic keratitis stages 2 and 3 with plasma rich in growth factors (PRGF-Endoret) eye-drops. International Ophthalmology, 2018, 38, 1193-1204.	1.4	53
88	Characterization of an encapsulated insulin secreting human pancreatic beta cell line in a modular microfluidic device. Journal of Drug Targeting, 2018, 26, 36-44.	4.4	15
89	The effect of plasma rich in growth factors combined with follicular unit extraction surgery for the treatment of hair loss: A pilot study. Journal of Cosmetic Dermatology, 2018, 17, 862-873.	1.6	12
90	Autologous bioscaffolds based on different concentrations of platelet rich plasma and synovial fluid as a vehicle for mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2018, 106, 377-385.	4.0	3

#	Article	IF	CITATIONS
91	Alginate Microcapsules for Drug Delivery. Springer Series in Biomaterials Science and Engineering, 2018, , 67-100.	1.0	11
92	Differential profile of protein expression on human keratocytes treated with autologous serum and plasma rich in growth factors (PRGF). PLoS ONE, 2018, 13, e0205073.	2.5	7
93	Flexible Bioelectronics: Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future (Adv. Sci. 10/2018). Advanced Science, 2018, 5, 1870059.	11.2	1
94	Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. Advanced Science, 2018, 5, 1700931.	11.2	83
95	Combinatorial Screening of Nanoclay-Reinforced Hydrogels: A Glimpse of the "Holy Grail―in Orthopedic Stem Cell Therapy?. ACS Applied Materials & Interfaces, 2018, 10, 34924-34941.	8.0	54
96	Advances and Future Perspectives in 4D Bioprinting. Biotechnology Journal, 2018, 13, e1800148.	3.5	168
97	Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Delivery, 2018, 25, 1147-1160.	5.7	25
98	Advances in the slow freezing cryopreservation of microencapsulated cells. Journal of Controlled Release, 2018, 281, 119-138.	9.9	48
99	3D Printed porous polyamide macrocapsule combined with alginate microcapsules for safer cell-based therapies. Scientific Reports, 2018, 8, 8512.	3.3	25
100	Low molecular-weight hyaluronan as a cryoprotectant for the storage of microencapsulated cells. International Journal of Pharmaceutics, 2018, 548, 206-216.	5.2	4
101	Plasma rich in growth factors eye drops to treat secondary ocular surface disorders in patients with glaucoma. International Medical Case Reports Journal, 2018, Volume 11, 97-103.	0.8	18
102	Advances in stem cell therapy for cartilage regeneration in osteoarthritis. Expert Opinion on Biological Therapy, 2018, 18, 883-896.	3.1	21
103	Hybrid Alginate–Protein-Coated Graphene Oxide Microcapsules Enhance the Functionality of Erythropoietin Secreting C ₂ C ₁₂ Myoblasts. Molecular Pharmaceutics, 2017, 14, 885-898.	4.6	13
104	Biologically active and biomimetic dual gelatin scaffolds for tissue engineering. International Journal of Biological Macromolecules, 2017, 98, 486-494.	7.5	24
105	Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Seminars in Cancer Biology, 2017, 43, 157-179.	9.6	59
106	Progress of gelatin-based 3D approaches for bone regeneration. Journal of Drug Delivery Science and Technology, 2017, 42, 63-74.	3.0	89
107	The Effect of Plasma Rich in Growth Factors on Pattern Hair Loss: A Pilot Study. Dermatologic Surgery, 2017, 43, 658-670.	0.8	70
108	Allogeneic Platelet-Rich Plasma: At the Dawn of an Off-the-Shelf Therapy?. Trends in Biotechnology, 2017, 35, 91-93.	9.3	45

#	Article	IF	CITATIONS
109	Alginate Microcapsules Incorporating Hyaluronic Acid Recreate Closer <i>in Vivo</i> Environment for Mesenchymal Stem Cells. Molecular Pharmaceutics, 2017, 14, 2390-2399.	4.6	28
110	Cell microencapsulation technology: Current vision of its therapeutic potential through the administration routes. Journal of Drug Delivery Science and Technology, 2017, 42, 49-62.	3.0	30
111	The Effect of Immunologically Safe Plasma Rich in Growth Factor Eye Drops in Patients with SjĶgren Syndrome. Journal of Ocular Pharmacology and Therapeutics, 2017, 33, 391-399.	1.4	38
112	Human-Based Biological and Biomimetic Autologous Therapies for Musculoskeletal Tissue Regeneration. Trends in Biotechnology, 2017, 35, 192-202.	9.3	47
113	Personalized plasma-based medicine to treat age-related diseases. Materials Science and Engineering C, 2017, 74, 459-464.	7.3	16
114	Improved control over MSCs behavior within 3D matrices by using different cell loads in both in vitro and in vivo environments. International Journal of Pharmaceutics, 2017, 533, 62-72.	5.2	4
115	Cryopreservation of Human Mesenchymal Stem Cells in an Allogeneic Bioscaffold based on Platelet Rich Plasma and Synovial Fluid. Scientific Reports, 2017, 7, 15733.	3.3	20
116	Platelet-rich plasma therapies: Building the path to evidence. Journal of Orthopaedics, 2017, 14, 68-69.	1.3	1
117	Editorial: Recent Advances and Innovative Strategies Applied in the Development of Biomaterials. Current Pharmaceutical Design, 2017, 23, 3453-3454.	1.9	2
118	Early diagnosis of mild cognitive impairment and Alzheimer's disease based on salivary lactoferrin. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 8, 131-138.	2.4	93
119	Gelatin as Biomaterial for Tissue Engineering. Current Pharmaceutical Design, 2017, 23, 3567-3584.	1.9	275
120	Platelet-Rich Plasma Therapy and Antithrombotic Drugs. Pain Physician, 2017, 20, E335-E336.	0.4	1
121	Autologous Plasma Rich in Growth Factors Eyedrops in Refractory Cases of Ocular Surface Disorders. Ophthalmic Research, 2016, 55, 53-61.	1.9	40
122	Safety and Efficacy of Autologous Plasma Rich in Growth Factors Eye Drops for the Treatment of Evaporative Dry Eye. Ophthalmic Research, 2016, 56, 68-73.	1.9	39
123	Plasma Rich in Growth Factors for the Treatment of Ocular Surface Diseases. Current Eye Research, 2016, 41, 875-882.	1.5	54
124	Preservation of Biological Activity of Plasma and Platelet-Derived Eye Drops After Their Different Time and Temperature Conditions of Storage. Cornea, 2015, 34, 1144-1148.	1.7	25
125	Assessment of the Behavior of Mesenchymal Stem Cells Immobilized in Biomimetic Alginate Microcapsules. Molecular Pharmaceutics, 2015, 12, 3953-3962.	4.6	22
126	Intranasal PRGF-Endoret enhances neuronal survival and attenuates NF-κB-dependent inflammation process in a mouse model of Parkinson's disease. Journal of Controlled Release, 2015, 203, 170-180.	9.9	48

#	Article	IF	CITATIONS
127	Advances in cell encapsulation technology and its application in drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 1251-1267.	5.0	31
128	Cryopreservation of microencapsulated murine mesenchymal stem cells genetically engineered to secrete erythropoietin. International Journal of Pharmaceutics, 2015, 485, 15-24.	5.2	32
129	Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate. International Journal of Pharmaceutics, 2015, 493, 260-270.	5.2	34
130	Cell encapsulation: technical and clinical advances. Trends in Pharmacological Sciences, 2015, 36, 537-546.	8.7	151
131	Evaluation of different RCD ligand densities in the development of cell-based drug delivery systems. Journal of Drug Targeting, 2015, 23, 806-812.	4.4	14
132	Autologous serum and plasma rich in growth factors in ophthalmology: preclinical and clinical studies. Acta Ophthalmologica, 2015, 93, e605-14.	1.1	120
133	Drug Delivery Technologies and Stem Cells for Tissue Repair and Regeneration. Current Pharmaceutical Biotechnology, 2015, 16, 646-654.	1.6	0
134	The synergistic effects of the RGD density and the microenvironment on the behavior of encapsulated cells:In vitroandin vivodirect comparative study. Journal of Biomedical Materials Research - Part A, 2014, 102, 3965-3972.	4.0	16
135	Behaviour and ultrastructure of human bone marrow-derived mesenchymal stem cells immobilised in alginate-poly- <scp>l</scp> -lysine-alginate microcapsules. Journal of Microencapsulation, 2014, 31, 579-589.	2.8	17
136	Plasma rich in growth factors (PRGF-Endoret) reduces neuropathologic hallmarks and improves cognitive functions in an Alzheimer's disease mouse model. Neurobiology of Aging, 2014, 35, 1582-1595.	3.1	41
137	Encapsulate this: the do's and don'ts. Nature Medicine, 2014, 20, 233-233.	30.7	13
138	Nanotherapeutic approaches for brain cancer management. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e905-e919.	3.3	87
139	Encapsulated cell therapy for neurodegenerative diseases: From promise to product. Advanced Drug Delivery Reviews, 2014, 67-68, 131-141.	13.7	76
140	Multifunctional hydrogel-based scaffold for improving the functionality of encapsulated therapeutic cells and reducing inflammatory response. Acta Biomaterialia, 2014, 10, 4206-4216.	8.3	29
141	Clinical Evaluation of Splitâ€Crest Technique with Ultrasonic Bone Surgery for Narrow Ridge Expansion: Status of Soft and Hard Tissues and Implant Success. Clinical Implant Dentistry and Related Research, 2013, 15, 176-187.	3.7	39
142	Encapsulation of Cells in Alginate Gels. Methods in Molecular Biology, 2013, 1051, 313-325.	0.9	11
143	Therapeutic Applications of Encapsulated Cells. Methods in Molecular Biology, 2013, 1051, 349-364.	0.9	13
144	Hydrogel-Based Scaffolds for Enclosing Encapsulated Therapeutic Cells. Biomacromolecules, 2013, 14, 322-330.	5.4	18

9

#	Article	IF	CITATIONS
145	A preliminary approach to the repair of myocardial infarction using adipose tissue-derived stem cells encapsulated in magnetic resonance-labelled alginate microspheres in a porcine model. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 29-39.	4.3	38
146	Plasma Rich in Growth Factors Promotes Bone Tissue Regeneration by Stimulating Proliferation, Migration, and Autocrine Secretion in Primary Human Osteoblasts. Journal of Periodontology, 2013, 84, 1180-1190.	3.4	89
147	Therapeutic cell encapsulation: Ten steps towards clinical translation. Journal of Controlled Release, 2013, 170, 1-14.	9.9	75
148	Inactivation of encapsulated cells and their therapeutic effects by means of TGL triple-fusion reporter/biosafety gene. Biomaterials, 2013, 34, 1442-1451.	11.4	16
149	Platelet-Rich Plasma to Improve the Bio-Functionality of Biomaterials. BioDrugs, 2013, 27, 97-111.	4.6	36
150	Biological Stability of Plasma Rich in Growth Factors Eye Drops After Storage of 3 Months. Cornea, 2013, 32, 1380-1386.	1.7	43
151	Intranasal Delivery of Plasma and Platelet Growth Factors Using PRGF-Endoret System Enhances Neurogenesis in a Mouse Model of Alzheimer's Disease. PLoS ONE, 2013, 8, e73118.	2.5	47
152	Encapsulated VEGF-Secreting Cells Enhance Proliferation of Neuronal Progenitors in the Hippocampus of AβPP/Ps1 Mice. Journal of Alzheimer's Disease, 2012, 29, 187-200.	2.6	30
153	Stem cells in alginate bioscaffolds. Therapeutic Delivery, 2012, 3, 761-774.	2.2	18
154	Plasma Rich In Growth Factors Promote Gingival Tissue Regeneration by Stimulating Fibroblast Proliferation and Migration and by Blocking Transforming Growth Factorâ€î²1â€induced Myodifferentiation. Journal of Periodontology, 2012, 83, 1028-1037.	3.4	78
155	A Perspective on Bioactive Cell Microencapsulation. BioDrugs, 2012, 26, 283-301.	4.6	31
156	Novel advances in the design of three-dimensional bio-scaffolds to control cell fate: translation from 2D to 3D. Trends in Biotechnology, 2012, 30, 331-341.	9.3	121
157	Perspectives and challenges in regenerative medicine using plasma rich in growth factors. Journal of Controlled Release, 2012, 157, 29-38.	9.9	172
158	Endogenous regenerative technology using plasma- and platelet-derived growth factors. Journal of Controlled Release, 2012, 157, 317-320.	9.9	38
159	A Perspective on Bioactive Cell Microencapsulation. BioDrugs, 2012, 26, 283-301.	4.6	2
160	Tales of Biomaterials, Molecules, and Cells for Repairing and Treating Brain Dysfunction. Current Stem Cell Research and Therapy, 2011, 6, 171-189.	1.3	8
161	Emerging technologies in the delivery of erythropoietin for therapeutics. Medicinal Research Reviews, 2011, 31, 284-309.	10.5	20
162	Design of a composite drug delivery system to prolong functionality of cell-based scaffolds. International Journal of Pharmaceutics, 2011, 407, 142-150.	5.2	32

#	Article	IF	CITATIONS
163	Plasma Rich in Growth Factors (PRGF-Endoret) Stimulates Proliferation and Migration of Primary Keratocytes and Conjunctival Fibroblasts and Inhibits and Reverts TGF-β1–Induced Myodifferentiation. , 2011, 52, 6066.		113
164	INNOVATIONS IN THE USE OF BIOMATERIALS FOR TREATING BRAIN DISEASE. Technology and Innovation, 2010, 12, 29-53.	0.2	1
165	Potential of endogenous regenerative technology for in situ regenerative medicineâ~†. Advanced Drug Delivery Reviews, 2010, 62, 741-752.	13.7	174
166	Microcapsules and microcarriers for in situ cell deliveryâ~†. Advanced Drug Delivery Reviews, 2010, 62, 711-730.	13.7	323
167	Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunology, Immunotherapy, 2010, 59, 1621-1631.	4.2	38
168	Improvement of the monitoring and biosafety of encapsulated cells using the SFGNESTGL triple reporter system. Journal of Controlled Release, 2010, 146, 93-98.	9.9	29
169	The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer's disease. Biomaterials, 2010, 31, 5608-5618.	11.4	114
170	Biomaterials in Cell Microencapsulation. Advances in Experimental Medicine and Biology, 2010, 670, 5-21.	1.6	73
171	Recent advances in the use of encapsulated cells for effective delivery of therapeutics. Therapeutic Delivery, 2010, 1, 387-396.	2.2	7
172	Highlights and Trends in Cell Encapsulation. Advances in Experimental Medicine and Biology, 2010, 670, 1-4.	1.6	9
173	Epo Delivery by Genetically Engineered C2C12 Myoblasts Immobilized in Microcapsules. Advances in Experimental Medicine and Biology, 2010, 670, 54-67.	1.6	3
174	Bioactive cell-hydrogel microcapsules for cell-based drug delivery. Journal of Controlled Release, 2009, 135, 203-210.	9.9	94
175	Xenogeneic transplantation of erythropoietin-secreting cells immobilized in microcapsules using transient immunosuppression. Journal of Controlled Release, 2009, 137, 174-178.	9.9	49
176	Biocompatibility and <i>in vivo</i> evaluation of oligochitosans as cationic modifiers of alginate/Ca microcapsules. Journal of Biomedical Materials Research - Part A, 2009, 91A, 1119-1130.	4.0	18
177	Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials, 2009, 30, 3495-3501.	11.4	46
178	Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials, 2009, 30, 2559-2570.	11.4	198
179	Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience, 2009, 10, 682-692.	10.2	378
180	Cell microencapsulation technology: Towards clinical application. Journal of Controlled Release, 2008, 132, 76-83.	9.9	314

#	Article	IF	CITATIONS
181	Delivering growth factors for therapeutics. Trends in Pharmacological Sciences, 2008, 29, 37-41.	8.7	180
182	In Vitro Characterization and In Vivo Functionality of Erythropoietin-Secreting Cells Immobilized in Alginateâ ''Poly- <scp>I</scp> -Lysineâ ''Alginate Microcapsules. Biomacromolecules, 2007, 8, 3302-3307.	5.4	59
183	Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats. International Journal of Pharmaceutics, 2007, 343, 69-78.	5.2	64
184	Encapsulation of Cells in Alginate Gels. Methods in Biotechnology, 2006, , 345-355.	0.2	22
185	Chemistry and the biological response against immunoisolating alginate–polycation capsules of different composition. Biomaterials, 2006, 27, 4831-4839.	11.4	99
186	Biocompatibility of alginate–poly-l-lysine microcapsules for cell therapyâ~†. Biomaterials, 2006, 27, 3691-3700.	11.4	309
187	The effect of selected parameters of formation on properties of alginate/Ca2+/oligochitosan capsules. Journal of Chemical Technology and Biotechnology, 2006, 81, 511-518.	3.2	7
188	Biomedical Applications of Immobilized Cells. Methods in Biotechnology, 2006, , 427-437.	0.2	3
189	Challenges in Cell Encapsulation. Focus on Biotechnology, 2005, , 185-196.	0.4	6
190	History, challenges and perspectives of cell microencapsulation. Trends in Biotechnology, 2004, 22, 87-92.	9.3	333
191	The search for new β-cell sources. Trends in Biotechnology, 2004, 22, 612-613.	9.3	2
192	Techniques: New approaches to the delivery of biopharmaceuticals. Trends in Pharmacological Sciences, 2004, 25, 382-387.	8.7	87
193	Controversies over stem cell research. Trends in Biotechnology, 2003, 21, 109-112.	9.3	15
194	Drug delivery in biotechnology: present and future. Current Opinion in Biotechnology, 2003, 14, 659-664.	6.6	198
195	Cell encapsulation: Promise and progress. Nature Medicine, 2003, 9, 104-107.	30.7	546
196	Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends in Pharmacological Sciences, 2003, 24, 207-210.	8.7	127
197	Encapsulated cell technology: from research to market. Trends in Biotechnology, 2002, 20, 382-387.	9.3	59