Orkide CoÅkuner-Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2764947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Challenges and limitations in the studies of glycoproteins: A computational chemist's perspective. Proteins: Structure, Function and Bioinformatics, 2022, 90, 322-339.	1.5	0
2	Methods to study the effect of solution variables on the conformational dynamics of intrinsically disordered proteins. , 2022, , 551-563.		1
3	From Quantum Mechanics, Classical Mechanics, and Bioinformatics to Artificial Intelligence Studies in Neurodegenerative Diseases. Methods in Molecular Biology, 2022, 2340, 139-173.	0.4	1
4	Structures of the Wild-Type and S59L Mutant CHCHD10 Proteins Important in Amyotrophic Lateral Sclerosis–Frontotemporal Dementia. ACS Chemical Neuroscience, 2022, 13, 1273-1280.	1.7	6
5	Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophysical Reviews, 2022, 14, 679-707.	1.5	20
6	Current Challenges and Limitations in the Studies of Intrinsically Disordered Proteins in Neurodegenerative Diseases by Computer Simulations. Current Alzheimer Research, 2021, 17, 805-818.	0.7	18
7	Secondary structure dependence of amyloidâ€î²(1–40) on simulation techniques and force field parameters. Chemical Biology and Drug Design, 2021, 97, 1100-1108.	1.5	10
8	Structures of <scp>MERS oV</scp> macro domain in aqueous solution with dynamics: Impacts of parallel tempering simulation techniques and <scp>CHARMM36m</scp> and <scp>AMBER99SB</scp> force field parameters. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1289-1299.	1.5	2
9	Molecular simulations of IDPs: From ensemble generation to IDP interactions leading to disorder-to-order transitions. Progress in Molecular Biology and Translational Science, 2021, 183, 135-185.	0.9	9
10	Secondary structure dependence on simulation techniques and force field parameters: from disordered to ordered proteins. Biophysical Reviews, 2021, 13, 1173-1178.	1.5	4
11	Epitope region identification challenges of intrinsically disordered proteins in neurodegenerative diseases: Secondary structure dependence of αâ€synuclein on simulation techniques and force field parameters. Chemical Biology and Drug Design, 2020, 96, 659-667.	1.5	13
12	Intrinsically disordered proteins in various hypotheses on the pathogenesis of Alzheimer's and Parkinson's diseases. Progress in Molecular Biology and Translational Science, 2019, 166, 145-223.	0.9	22
13	Alanine Scanning Effects on the Biochemical and Biophysical Properties of Intrinsically Disordered Proteins: A Case Study of the Histidine to Alanine Mutations in Amyloid-β ₄₂ . Journal of Chemical Information and Modeling, 2019, 59, 871-884.	2.5	14
14	Transition Metal Ion Interactions with Disordered Amyloid-β Peptides in the Pathogenesis of Alzheimer's Disease: Insights from Computational Chemistry Studies. Journal of Chemical Information and Modeling, 2019, 59, 1782-1805.	2.5	46
15	Quantum Chemistry Meets Deep Learning for Complex Carbohydrate and Glycopeptide Species I. Zeitschrift Fur Physikalische Chemie, 2019, 233, 527-550.	1.4	4
16	Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. International Journal of Molecular Sciences, 2018, 19, 336.	1.8	51
17	Revisiting Cu(II) Bound Amyloid-β40 and Amyloid-β42 Peptides: Varying Coordination Chemistries. Journal of the Turkish Chemical Society, Section A: Chemistry, 2018, 5, 981-1008.	0.4	6
18	Tyrosine Regulates β-Sheet Structure Formation in Amyloid-β ₄₂ : A New Clustering Algorithm for Disordered Proteins. Journal of Chemical Information and Modeling, 2017, 57, 1342-1358.	2.5	26

#	Article	IF	CITATIONS
19	How accurate are your simulations? Effects of confined aqueous volume and AMBER FF99SB and CHARMM22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-l² ₄₂ in water. Intrinsically Disordered Proteins, 2017, 5, e1377813.	1.9	37
20	BMP-2 and BMP-9 binding specificities with ALK-3 in aqueous solution with dynamics. Journal of Molecular Graphics and Modelling, 2017, 77, 181-188.	1.3	3
21	Divalent copper ion bound amyloid-β(40) and amyloid-β(42) alloforms are less preferred than divalent zinc ion bound amyloid-β(40) and amyloid-β(42) alloforms. Journal of Biological Inorganic Chemistry, 2016, 21, 957-973.	1.1	18
22	Adenosine Triphosphate (ATP) Reduces Amyloid-β Protein Misfolding in vitro. Journal of Alzheimer's Disease, 2014, 41, 561-574.	1.2	25
23	New force field parameters for metalloproteins I: Divalent copper ion centers including three histidine residues and an oxygenâ€ligated amino acid residue. Journal of Computational Chemistry, 2014, 35, 1278-1289.	1.5	24
24	Structures of the E46K Mutant-Type α-Synuclein Protein and Impact of E46K Mutation on the Structures of the Wild-Type α-Synuclein Protein. ACS Chemical Neuroscience, 2013, 4, 498-508.	1.7	55
25	Arginine and Disordered Amyloid-β Peptide Structures: Molecular Level Insights into the Toxicity in Alzheimer's Disease. ACS Chemical Neuroscience, 2013, 4, 1549-1558.	1.7	30
26	Structures and Free Energy Landscapes of the Wild-Type and A30P Mutant-Type α-Synuclein Proteins with Dynamics. ACS Chemical Neuroscience, 2013, 4, 486-497.	1.7	36
27	The Structures of the E22Δ Mutant-Type Amyloid-β Alloforms and the Impact of E22Δ Mutation on the Structures of the Wild-Type Amyloid-β Alloforms. ACS Chemical Neuroscience, 2013, 4, 310-320.	1.7	38
28	Structures and Free Energy Landscapes of the A53T Mutant-Type α-Synuclein Protein and Impact of A53T Mutation on the Structures of the Wild-Type α-Synuclein Protein with Dynamics. ACS Chemical Neuroscience, 2013, 4, 1101-1113.	1.7	66
29	Probing and Trapping a Sensitive Conformation: Amyloid-β Fibrils, Oligomers, and Dimers. Journal of Alzheimer's Disease, 2012, 32, 197-215.	1.2	23
30	Structures and free energy landscapes of aqueous zinc(II)-bound amyloid-β(1–40) and zinc(II)-bound amyloid-β(1–42) with dynamics. Journal of Biological Inorganic Chemistry, 2012, 17, 927-938.	1.1	40
31	Amyloid-β peptide structure in aqueous solution varies with fragment size. Journal of Chemical Physics, 2011, 135, 205101.	1.2	47
32	Single Ion and Dimerization Studies of the Al(III) Ion in Aqueous Solution. Journal of Physical Chemistry A, 2010, 114, 10981-10987.	1.1	13
33	Dynamic and Structural Properties of Aqueous Arsenic Solutions. ChemPhysChem, 2009, 10, 1187-1189.	1.0	7
34	Identification of Active Sites of Biomolecules II: Saccharide and Transition Metal Ion in Aqueous Solution. Journal of Physical Chemistry A, 2009, 113, 2491-2499.	1.1	12
35	Coordination Studies of Al-EDTA in Aqueous Solution. Journal of Physical Chemistry A, 2008, 112, 2628-2633.	1.1	29
36	ldentification of Active Sites of Biomolecules. 1. Methyl-α-mannopyranoside and Fe ^{III} . Journal of Physical Chemistry A, 2008, 112, 2940-2947.	1.1	16

#	Article	IF	CITATIONS
37	Ligand Exchange Reactions in the Formation of Diphosphine-Protected Gold Clusters. Journal of Physical Chemistry C, 2008, 112, 12808-12814.	1.5	34
38	Glycosidic linkage conformation of methyl-α-mannopyranoside. Journal of Chemical Physics, 2008, 129, 045102.	1.2	10
39	Preferred conformation of the glycosidic linkage of methyl-β-mannose. Journal of Chemical Physics, 2007, 127, 015101.	1.2	23
40	Hydrophobic Interactions of Xenon by Monte Carlo Simulations. Zeitschrift Fur Physikalische Chemie, 2007, 221, 785-799.	1.4	21
41	Water Dissociation in the Presence of Metal Ions. Angewandte Chemie - International Edition, 2007, 46, 7853-7855.	7.2	30
42	Hydrophobic Interactions by Monte Carlo Simulations. Zeitschrift Fur Physikalische Chemie, 2006, 220, 349-369.	1.4	24