
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/276491/publications.pdf Version: 2024-02-01

FRICLE ROURC

#	Article	IF	CITATIONS
1	Is It Time to Relax Research on Death Rates of Supercentenarians?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 755-757.	1.7	0
2	Geroscience: the need to address some issues. Biogerontology, 2022, 23, 145-150.	2.0	8
3	Epidemics and Forecasts of Life Expectancy. Gerontology, 2022, 68, 453-455.	1.4	2
4	Drosophila melanogaster flies better know than us the nutrients they need: Let them choose. Experimental Gerontology, 2022, 162, 111768.	1.2	3
5	Covid-19: were curfews in France associated with hospitalisations?. Epidemiologic Methods, 2021, 10, .	0.8	0
6	Neglecting larval rearing conditions in Drosophila melanogaster can negatively impact research on ageing. Biogerontology, 2021, 22, 369-373.	2.0	2
7	A mild heat stress increases resistance to heat of dFOXO Drosophila melanogaster mutants but less in wild-type flies. Biogerontology, 2021, 22, 237-251.	2.0	3
8	Covid-19 and the next outbreak: decreasing frailty by using mild stress?. Biogerontology, 2021, 22, 565-569.	2.0	1
9	The Fact and Fiction of Nutritional Claims About Health and Longevity. Healthy Ageing and Longevity, 2021, , 617-630.	0.2	0
10	New life expectancy forecasts are too optimistic. Biogerontology, 2021, 22, 655-658.	2.0	1
11	Is lifespan linked with developmental viability in Drosophila melanogaster?. Experimental Gerontology, 2021, 156, 111583.	1.2	2
12	Covid-19 Mortality: A Matter of Vulnerability Among Nations Facing Limited Margins of Adaptation. Frontiers in Public Health, 2020, 8, 604339.	1.3	55
13	Characterisation of the positive effects of mild stress on ageing and resistance to stress. Biogerontology, 2020, 21, 485-493.	2.0	4
14	Lifespan Versus Healthspan. Healthy Ageing and Longevity, 2020, , 439-452.	0.2	1
15	Is Life Expectancy of French Women Going to Plateau and Oscillate?. Gerontology, 2019, 65, 288-293.	1.4	15
16	Hypergravity increases resistance to heat in dFOXO Drosophila melanogaster mutants and can lower FOXO translocation in wild-type males. Biogerontology, 2019, 20, 883-891.	2.0	2
17	Age Determination and Lifespan of Marine Animal Species. , 2019, , 26-26.		4

#	Article	IF	CITATIONS
19	Is it Time to State That Diet Restriction Does Not Increase Life span in Primates?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 308-309.	1.7	2

20 Does Calorie Restriction in Primates Increase Lifespan? Revisiting Studies on Macaques (<i>Macaca) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

21	Do″t‥ourself Calorie Restriction: The Risks of Simplistically Translating Findings in Animal Models to Humans. BioEssays, 2018, 40, e1800087.	1.2	12
22	Combining three mild stresses in Drosophila melanogaster flies does not have a more positive effect on resistance to a severe cold stress than combining two mild stresses. Biogerontology, 2017, 18, 275-284.	2.0	7
23	Aging and the Inevitable Limit to Human Life Span. Gerontology, 2017, 63, 432-434.	1.4	33
24	The Future of Human Longevity: Time for a Reality Check. Gerontology, 2017, 63, 527-528.	1.4	5
25	Somatotropic Axis' Role in Ageing and Longevity Could Depend on Life-History Strategies of Species. Healthy Ageing and Longevity, 2017, , 21-33.	0.2	1
26	A mild cold stress that increases resistance to heat lowers FOXO translocation in Drosophila melanogaster. Biogerontology, 2017, 18, 791-801.	2.0	4
27	Are We Reaching the Limits of Homo sapiens?. Frontiers in Physiology, 2017, 8, 812.	1.3	52
28	No Ground for Advocating that Korean Eunuchs Lived Longer than Intact Men. Gerontology, 2016, 62, 69-70.	1.4	7
29	Life-time protection against severe heat stress by exposing young Drosophila melanogaster flies to a mild cold stress. Biogerontology, 2016, 17, 409-415.	2.0	13
30	Effect of high-frequency radiations on survival of the honeybee (Apis mellifera L.). Apidologie, 2016, 47, 703-710.	0.9	14
31	The somatotropic axis may not modulate ageing and longevity in humans. Biogerontology, 2016, 17, 421-429.	2.0	17
32	Feeding on frozen live yeast has some deleterious effects in Drosophila melanogaster. Experimental Gerontology, 2015, 69, 202-210.	1.2	9
33	Fasting increases survival to cold in FOXO, DIF, autophagy mutants and in other genotypes of Drosophila melanogaster. Biogerontology, 2015, 16, 411-421.	2.0	11
34	Fasting and other mild stresses with hormetic effects in Drosophila melanogaster can additively increase resistance to cold. Biogerontology, 2015, 16, 517-527.	2.0	11
35	Effects of Mild Stresses Applied in Adults on Aging and Longevity. Healthy Ageing and Longevity, 2015, , 301-320.	0.2	1
36	Evolutionary Theories of Aging Can Explain Why We Age. Interdisciplinary Topics in Gerontology, 2014, 39, 8-23.	3.6	14

3

#	Article	IF	CITATIONS
37	Hormesis and Trade-Offs: A Comment. Dose-Response, 2014, 12, dose-response.1.	0.7	6
38	Time of famine: Time to reproduce? (comment on DOI 10.1002/bies.201300165). BioEssays, 2014, 36, 436-436.	1.2	2
39	Limitations of log-rank tests for analysing longevity data in biogerontology. Biogerontology, 2014, 15, 401-405.	2.0	6
40	Individual late-life fecundity plateaus do exist in Drosophila melanogaster and are very common at old age. Experimental Gerontology, 2014, 55, 102-106.	1.2	11
41	Obsolete ideas and logical confusions can be obstacles for biogerontology research. Biogerontology, 2013, 14, 221-227.	2.0	16
42	Fasting can protect young and middle-aged Drosophila melanogaster flies against a severe cold stress. Biogerontology, 2013, 14, 513-529.	2.0	35
43	About the article "Exploring the impact of climate on human longevity―(Exp. Geront. 47, 660–671,) Tj ETÇ	2q1_1 0.78 1.2	34314 rgB ⁻ [/
44	Dietary Restriction Studies in Humans: Focusing on Obesity, Forgetting Longevity. Gerontology, 2012, 58, 126-128.	1.4	19
45	Dietary Restriction in Humans: A Response to Drs. Gavrilova and Gavrilov. Gerontology, 2012, 58, 224-226.	1.4	5
46	The NF-κB-like factor DIF could explain some positive effects of a mild stress on longevity, behavioral aging, and resistance to strong stresses in Drosophila melanogaster. Biogerontology, 2012, 13, 445-455.	2.0	15
47	Forecasting continuously increasing life expectancy: What implications?. Ageing Research Reviews, 2012, 11, 325-328.	5.0	16
48	Combined effects of two mild stresses (cold and hypergravity) on longevity, behavioral aging, and resistance to severe stresses in Drosophila melanogaster. Biogerontology, 2012, 13, 313-328.	2.0	26
49	Using Drosophila melanogaster to study the positive effects of mild stress on aging. Experimental Gerontology, 2011, 46, 345-348.	1.2	22
50	A cold stress applied at various ages can increase resistance to heat and fungal infection in aged Drosophila melanogaster flies. Biogerontology, 2011, 12, 185-193.	2.0	34
51	The NF-kB like factor DIF has weaker effects on Drosophila melanogaster immune defenses than previously thought. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2011, 181, 741-750.	0.7	12
52	Combined effects of suppressing live yeast and of a cold pretreatment on longevity, aging and resistance to several stresses in Drosophila melanogaster. Biogerontology, 2010, 11, 245-254.	2.0	21
53	It is Time to Thoroughly Study the Effects of Mild Stress in Rodents, but also in Human Beings. Dose-Response, 2010, 8, dose-response.0.	0.7	2
54	"ls Hormesis Applicable as a Pro-Healthy Aging Intervention in Mammals and Human Beings, and How?― Dose-Response, 2010, 8, dose-response.0.	0.7	12

#	Article	IF	CITATIONS
55	Predicting whether dietary restriction would increase longevity in species not tested so far. Ageing Research Reviews, 2010, 9, 289-297.	5.0	39
56	Contrasted effects of suppressing live yeast from food on longevity, aging and resistance to several stresses in Drosophila melanogaster. Experimental Gerontology, 2009, 44, 695-707.	1.2	31
57	Cold stress increases resistance to fungal infection throughout life in Drosophila melanogaster. Biogerontology, 2009, 10, 613-625.	2.0	54
58	Hormesis, aging and longevity. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1030-1039.	1.1	109
59	Mild Stress and Life Extension in Drosophila melanogaster. , 2009, , 75-88.		2
60	Three Mild Stresses Known to Increase Longevity in Drosophila melanogaster Flies do not Increase Resistance to Oxidative Stress. American Journal of Pharmacology and Toxicology, 2008, 3, 137-143.	0.7	4
61	Does reproduction decrease longevity in human beings?. Ageing Research Reviews, 2007, 6, 141-149.	5.0	79
62	Further characterization of an aversive learning task in Drosophila melanogaster: intensity of the stimulus, relearning, and use of rutabaga mutants. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 1139-1149.	0.7	6
63	Hormetic effects on longevity of hydrogen peroxide in Drosophila melanogaster flies living on a poorly nutritious medium. Biogerontology, 2007, 8, 327-344.	2.0	20
64	Hormetic effects of repeated exposures to cold at young age on longevity, aging and resistance to heat or cold shocks in Drosophila melanogaster. Biogerontology, 2007, 8, 431-444.	2.0	71
65	Can dietary restriction increase longevity in all species, particularly in human beings? Introduction to a debate among experts. Biogerontology, 2006, 7, 123-125.	2.0	33
66	Dietary restriction would probably not increase longevity in human beings and other species able to leave unsuitable environments. Biogerontology, 2006, 7, 149-152.	2.0	14
67	Humidity as an aversive stimulus in learning inDrosophila melanogaster. Learning and Behavior, 2005, 33, 265-276.	0.5	5
68	Hormetic protection of Drosophila melanogaster middle-aged male flies from heat stress by mildly stressing them at young age. Die Naturwissenschaften, 2005, 92, 293-296.	0.6	32
69	Does dietary restriction really increase longevity in Drosophila melanogaster?. Ageing Research Reviews, 2005, 4, 409-421.	5.0	21
70	Is Lifespan Extension Accompanied by Improved Antioxidant Defences? A Study of Superoxide Dismutase and Catalase in Drosophila Melanogaster Flies that Lived in Hypergravity at a Young Age. Biogerontology, 2004, 5, 261-266.	2.0	34
71	Male Drosophila melanogaster flies exposed to hypergravity at young age are protected against a non-lethal heat shock at middle age but not against behavioral impairments due to this shock. Biogerontology, 2004, 5, 431-443.	2.0	41
72	Effects of aging on learned suppression of photopositive tendencies in Drosophila melanogaster. Neurobiology of Aging, 2004, 25, 1241-1252.	1.5	20

#	Article	IF	CITATIONS
73	Delaying aging: could the study of hormesis be more helpful than that of the genetic pathway used to survive starvation?. Biogerontology, 2003, 4, 319-324.	2.0	21
74	A public debate about the feasibility of reversing human ageing could be detrimental. BioEssays, 2003, 25, 93-94.	1.2	5
75	Are Stress Resistance and Longevity Really Linked in Normal Living Conditions?. Gerontology, 2002, 48, 109-111.	1.4	6
76	Lack of hypergravity-associated longevity extension in Drosophila melanogaster flies overexpressing hsp70. Biogerontology, 2002, 3, 355-364.	2.0	32
77	Learned suppression of photopositive tendencies inDrosophila melanogaster. Learning and Behavior, 2002, 30, 330-341.	3.4	66
78	La longévité et le vieillissement au XXIe siècle. Retraite Et Societe, 2002, n ^o 36, 159-179.	0.1	1
79	Oxidative stress, aging and longevity inDrosophila melanogaster. FEBS Letters, 2001, 498, 183-186.	1.3	106
80	Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster. Biogerontology, 2001, 2, 155-164.	2.0	97
81	Gerontologists and the media in a time of gerontology expansion. , 2000, 1, 89-92.		18
82	A mild stress due to hypergravity exposure at young age increases longevity in Drosophila melanogaster males. Biogerontology, 2000, 1, 145-155.	2.0	61
83	Gerontologists and the media: false hopes and fantasies can be hazardous for science. Biogerontology, 2000, 1, 371-372.	2.0	10
84	HSP70 induction may explain the long-lasting resistance to heat of Drosophila melanogaster having lived in hypergravity. Mechanisms of Ageing and Development, 1999, 109, 65-77.	2.2	36
85	Resistance to stress as a function of age in Drosophila melanogaster living in hypergravity. Mechanisms of Ageing and Development, 1999, 109, 53-64.	2.2	40
86	A mild stress, hypergravity exposure, postpones behavioral aging in Drosophila melanogaster11This article is dedicated to Frédéric A. Lints, who died in January 1999 Experimental Gerontology, 1999, 34, 157-172.	1.2	66
87	A review of the effects of microgravity and of hypergravity on aging and longevity11A previous version of this article appeared in the journal of the Institute of Gerontology of Ukraine; Problems of Aging and Longevity 6, 239–252, 1996; the present article is an updated version Experimental Gerontology. 1999. 34. 319-336.	1.2	36
88	Evolutionary Theories of Aging: Handle with Care. Gerontology, 1998, 44, 345-348.	1.4	15
89	Increased longevity and resistance to heat shock in Drosophila melanogaster flies exposed to hypergravity. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 1997, 320, 215-221.	0.8	53
90	Correlational analysis in comparative gerontology: An examination of some problems. Experimental Gerontology, 1996, 31, 645-653.	1.2	13

#	Article	IF	CITATIONS
91	Selection for Increased Longevity in <i>Drosophila melanogaster</i> : Reflections on New Data. Gerontology, 1996, 42, 14-17.	1.4	4
92	Hypergravity and Aging in <i>Drosophila melanogaster</i> . Gerontology, 1996, 42, 235-240.	1.4	13
93	Spontaneous locomotor activity of Drosophila melanogaster flies at various gravity levels (0 g, 1 g,) Tj ETQq1 1 ().784314 r 0.5	gBT /Overlo
94	Hypergravity and aging in Drosophila melanogaster: 7. New longevity data. Experimental Gerontology, 1993, 28, 611-615.	1.2	25
95	Hypergravity and Aging in <i>Drosophila melanogaster. </i> 4. Climbing Activity. Gerontology, 1992, 38, 59-64.	1.4	89
96	Hypergravity and Aging in <i>Drosophila melanogaster. </i> 5. Patterns of Movement. Gerontology, 1992, 38, 65-70.	1.4	14
97	Hypergravity and Aging in <i>Drosophila melanogaster. </i> 6. Spontaneous Locomotor Activity. Gerontology, 1992, 38, 71-79.	1.4	23
98	Habituation of the Proboscis Extension Response as a Function of Age in <i>Drosophila melanogaster</i> . Gerontology, 1991, 37, 187-192.	1.4	17
99	Conditioned suppression of the proboscis-extension response in young, middle-aged, and old Drosophila melanogaster flies: Acquisition and extinction Journal of Comparative Psychology (Washington, D C: 1983), 1990, 104, 289-296.	0.3	22
100	Hypergravity and Ageing in <i>Drosophila melanogaster</i> . Gerontology, 1989, 35, 253-259.	1.4	9
101	Hypergravity and Ageing in <i>Drosophila melanogaster</i> . Gerontology, 1989, 35, 235-243.	1.4	16
102	Hypergravity and Ageing in <i>Drosophila melanogaster</i> . Gerontology, 1989, 35, 244-252.	1.4	21
103	The rate of living theory. Spontaneous locomotor activity, aging and longevity in Drosophila melanogaster. Experimental Gerontology, 1987, 22, 359-369.	1.2	53
104	Patterns of movement and ageing in Drosophila melanogaster. Archives of Gerontology and Geriatrics, 1983, 2, 299-306.	1.4	22
105	A mini-review of the evolutionary theories of aging Demographic Research, 0, 4, 1-28.	2.0	45