
Gigliola Lusvardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2764774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses. Acta Biomaterialia, 2013, 9, 4836-4844.	4.1	126
2	Evidence of Catalase Mimetic Activity in Ce ³⁺ /Ce ⁴⁺ Doped Bioactive Glasses. Journal of Physical Chemistry B, 2015, 119, 4009-4019.	1.2	119
3	Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. Journal of Materials Science: Materials in Medicine, 2012, 23, 2867-2879.	1.7	115
4	Fluoride-containing bioactive glasses: Surface reactivity in simulated body fluids solutions. Acta Biomaterialia, 2009, 5, 3548-3562.	4.1	112
5	Elucidation of the Structural Role of Fluorine in Potentially Bioactive Glasses by Experimental and Computational Investigation. Journal of Physical Chemistry B, 2008, 112, 12730-12739.	1.2	107
6	Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Materials Science and Engineering C, 2013, 33, 1132-1142.	3.8	102
7	Qualitative and Quantitative Structureâ ° Property Relationships Analysis of Multicomponent Potential Bioglasses. Journal of Physical Chemistry B, 2005, 109, 4989-4998.	1.2	98
8	Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. Journal of Non-Crystalline Solids, 2003, 316, 198-216.	1.5	95
9	Quantitative Structureâ^Property Relationships of Potentially Bioactive Fluoro Phospho-silicate Glasses. Journal of Physical Chemistry B, 2009, 113, 10331-10338.	1.2	80
10	Synthesis, Characterization, and Molecular Dynamics Simulation Of Na2Oâ^'CaOâ^'SiO2â^'ZnO Glasses. Journal of Physical Chemistry B, 2002, 106, 9753-9760.	1.2	76
11	Structural and in vitro study of cerium, gallium and zinc containing sol–gel bioactive glasses. Journal of Materials Chemistry, 2012, 22, 13698.	6.7	71
12	In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses. Acta Biomaterialia, 2009, 5, 419-428.	4.1	68
13	Curcumin release from cerium, gallium and zinc containing mesoporous bioactive glasses. Microporous and Mesoporous Materials, 2013, 180, 92-101.	2.2	64
14	Synthesis and Characterization of TiO2 Nanoparticles for the Reduction of Water Pollutants. Materials, 2017, 10, 1208.	1.3	64
15	Medium-range order in phospho-silicate bioactive glasses: Insights from MAS-NMR spectra, chemical durability experiments and molecular dynamics simulations. Journal of Non-Crystalline Solids, 2008, 354, 84-89.	1.5	54
16	Recycling of the product of thermal inertization of cement–asbestos for various industrial applications. Waste Management, 2011, 31, 91-100.	3.7	53
17	Properties of Zinc Releasing Surfaces for Clinical Applications. Journal of Biomaterials Applications, 2008, 22, 505-526.	1.2	52
18	Removal of cadmium ion by means of synthetic hydroxyapatite. Waste Management, 2002, 22, 853-857.	3.7	51

#	Article	IF	CITATIONS
19	Crystal structure of lead hydroxyapatite from powder X-ray diffraction data. Inorganica Chimica Acta, 1995, 236, 209-212.	1.2	47
20	The effect of composition on structural, thermal, redox and bioactive properties of Ce-containing glasses. Materials and Design, 2016, 97, 73-85.	3.3	43
21	Cerium-doped bioactive 45S5 glasses: spectroscopic, redox, bioactivity and biocatalytic properties. Journal of Materials Science, 2017, 52, 8845-8857.	1.7	43
22	Gallium-containing phosphoâ€silicate glasses: Synthesis and in vitro bioactivity. Materials Science and Engineering C, 2012, 32, 1401-1406.	3.8	42
23	Cerium Containing Bioactive Glasses: A Review. ACS Biomaterials Science and Engineering, 2021, 7, 4388-4401.	2.6	36
24	On the dissolution/reaction of small-grain Bioglass® 45S5 and F-modified bioactive glasses in artificial saliva (AS). Applied Surface Science, 2011, 257, 4185-4195.	3.1	34
25	Thermodynamic aspects of the adsorption of hexametaphosphate on kaolinite. Journal of Colloid and Interface Science, 2005, 292, 322-329.	5.0	33
26	Biodurability and release of metals during the dissolution of chrysotile, crocidolite and fibrous erionite. Environmental Research, 2019, 171, 550-557.	3.7	33
27	A Computational Tool for the Prediction of Crystalline Phases Obtained from Controlled Crystallization of Glasses. Journal of Physical Chemistry B, 2005, 109, 21586-21592.	1.2	32
28	Functionalization of Sol Gel Bioactive Glasses Carrying Au Nanoparticles: Selective Au Affinity for Amino and Thiol Ligand Groups. Langmuir, 2010, 26, 18600-18605.	1.6	32
29	The role of coordination chemistry in the development of innovative gallium-based bioceramics: the case of curcumin. Journal of Materials Chemistry, 2011, 21, 5027.	6.7	32
30	Highly-Bioreactive Silica-Based Mesoporous Bioactive Glasses Enriched with Gallium(III). Materials, 2018, 11, 367.	1.3	29
31	Coordination properties of N-p-tolylsulfonyl-l-glutamic acid toward metalII. Polyhedron, 1999, 18, 1975-1982.	1.0	28
32	Bioactive Glasses Containing Au Nanoparticles. Effect of Calcination Temperature on Structure, Morphology, and Surface Properties. Langmuir, 2010, 26, 10303-10314.	1.6	28
33	Biological effects and comparative cytotoxicity of thermal transformed asbestos-containing materials in a human alveolar epithelial cell line. Toxicology in Vitro, 2010, 24, 1521-1531.	1.1	27
34	Influence of Small Additions of Al2O3 on the Properties of the Na2O·3SiO2 Glass. Journal of Physical Chemistry B, 2001, 105, 919-927.	1.2	25
35	Release of ions from kaolinite dispersed in deflocculant solutions. Applied Clay Science, 2007, 36, 271-278.	2.6	24
36	Multitechnique approach to V–ZrSiO4 pigment characterization and synthesis optimization. Journal of the European Ceramic Society, 2007, 27, 1743-1750.	2.8	23

#	Article	IF	CITATIONS
37	Synthesis and characterization of bioactive glasses functionalized with Cu nanoparticles and organic molecules. Journal of the European Ceramic Society, 2012, 32, 2777-2783.	2.8	23
38	Towards the controlled release of metal nanoparticles from biomaterials: Physico-chemical, morphological and bioactivity features of Cu-containing sol–gel glasses. Applied Surface Science, 2013, 283, 240-248.	3.1	23
39	Gallium-containing phosphosilicate glasses: Functionalization and in-vitro bioactivity. Materials Science and Engineering C, 2013, 33, 3190-3196.	3.8	23
40	A combined experimental and computational approach to (Na2O)1â^'x·CaO·(ZnO)x·2SiO2 glasses characterization. Journal of Non-Crystalline Solids, 2004, 345-346, 710-714.	1.5	22
41	Ga-Modified (Si–Ca–P) Sol–Gel Glasses: Possible Relationships between Surface Chemical Properties and Bioactivity. Journal of Physical Chemistry C, 2011, 115, 22461-22474.	1.5	21
42	Cytocompatibility of Potential Bioactive Cerium-Doped Glasses based on 45S5. Materials, 2019, 12, 594.	1.3	21
43	Crystallization Kinetics of Bioactive Glasses in the ZnOâ^'Na ₂ Oâ^'CaOâ^'SiO ₂ System. Journal of Physical Chemistry A, 2007, 111, 8401-8408.	1.1	20
44	New Formulation of Functionalized Bioactive Glasses to Be Used as Carriers for the Development of pH-Stimuli Responsive Biomaterials for Bone Diseases. Langmuir, 2014, 30, 4703-4715.	1.6	19
45	Biomimetic fabrication of antibacterial calcium phosphates mediated by polydopamine. Journal of Inorganic Biochemistry, 2018, 178, 43-53.	1.5	19
46	Mesoporous bioactive glasses doped with cerium: Investigation over enzymatic-like mimetic activities and bioactivity. Ceramics International, 2019, 45, 20910-20920.	2.3	19
47	Structure Model and Toxicity of the Product of Biodissolution of Chrysotile Asbestos in the Lungs. Chemical Research in Toxicology, 2019, 32, 2063-2077.	1.7	17
48	Gold-containing bioactive glasses: a solid-state synthesis to produce alternative biomaterials for bone implantations. Journal of the Royal Society Interface, 2013, 10, 20121040.	1.5	16
49	Recycling of thermally treated cement-asbestos for the production of porcelain stoneware slabs. Journal of Cleaner Production, 2020, 247, 119084.	4.6	16
50	Reactivity of biological and synthetic hydroxyapatite towards Zn(II) ion, solid-liquid investigations. Journal of Materials Science: Materials in Medicine, 2002, 13, 91-98.	1.7	15
51	Effect of Cu2+ ion on the structural stability of synthetic hydroxyapatite. Journal of Materials Chemistry, 1993, 3, 715.	6.7	14
52	Density of multicomponent silica-based potential bioglasses: Quantitative structure-property relationships (QSPR) analysis. Journal of the European Ceramic Society, 2007, 27, 499-504.	2.8	14
53	Composition and morphology effects on catalase mimetic activity of potential bioactive glasses. Ceramics International, 2020, 46, 25854-25864.	2.3	14
54	Role of the Surface Treatment in the Deflocculation of Kaolinite. Journal of the American Ceramic Society, 2006, 89, 1107-1109.	1.9	13

#	Article	IF	CITATIONS
55	Novel bio-conjugate materials: soybean peroxidase immobilized on bioactive glasses containing Au nanoparticles. Journal of Materials Chemistry, 2011, 21, 10970.	6.7	13
56	SiO2-CaO-P2O5 Bioactive Glasses: A Promising Curcuminoids Delivery System. Materials, 2016, 9, 290.	1.3	13
57	Investigation on the antimicrobial properties of ceriumâ€doped bioactive glasses. Journal of Biomedical Materials Research - Part A, 2022, 110, 504-508.	2.1	13
58	In vitro biodurability of the product of thermal transformation of cement–asbestos. Journal of Hazardous Materials, 2012, 205-206, 63-71.	6.5	9
59	P2O5-Free Cerium Containing Glasses: Bioactivity and Cytocompatibility Evaluation. Materials, 2019, 12, 3267.	1.3	9
60	Cell Proliferation to Evaluate Preliminarily the Presence of Enduring Self-Regenerative Antioxidant Activity in Cerium Doped Bioactive Glasses. Materials, 2020, 13, 2297.	1.3	9
61	Loading with Biomolecules Modulates the Antioxidant Activity of Cerium-Doped Bioactive Glasses. ACS Biomaterials Science and Engineering, 2022, 8, 2890-2898.	2.6	9
62	Conjugation of amino-bioactive glasses with 5-aminofluorescein as probe molecule for the development of pH sensitive stimuli-responsive biomaterials. Journal of Materials Science: Materials in Medicine, 2014, 25, 2243-2253.	1.7	8
63	Colloidal stability classification of TiO2 nanoparticles in artificial and in natural waters by cluster analysis and a global stability index: Influence of standard and natural colloidal particles. Science of the Total Environment, 2022, 829, 154658.	3.9	7
64	Evaluation of the behaviour of fluorine-containing bioactive glasses: reactivity in a simulated body fluid solution assisted by multivariate data analysis. Journal of Materials Science: Materials in Medicine, 2012, 23, 639-648.	1.7	6
65	Preparation and Luminescence Properties of Ba5Si8O21 Long Persistent Phosphors Doped with Rare-Earth Elements. Materials, 2019, 12, 183.	1.3	6
66	Systematic investigation of the parameters that influence the luminescence properties of photoluminescent pigments. Journal of Luminescence, 2016, 175, 141-148.	1.5	5
67	Substituent effect on the coordination ability of the amide group of N-protected amino acids. Inorganica Chimica Acta, 1994, 218, 53-58.	1.2	4
68	Effect of pH and anions on hydroxyapatite-Cu2+ solid-liquid interactions. Journal of Materials Chemistry, 1995, 5, 493.	6.7	3
69	Cadmium(II) N-(p-Tolylsulfonyl)glutaminate. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 2287-2289.	0.4	3
70	Preliminary Experiments of <i>In Situ</i> Atomic Force Microscopy Observation of Hydroxyapatite Formation on Bioactive Glass Surface. Journal of the American Ceramic Society, 2002, 85, 487-489.	1.9	3
71	A Combined Experimental-Computational Strategy for the Design, Synthesis and Characterization of Bioactive Zinc-Silicate Glasses. Key Engineering Materials, 2008, 377, 211-224.	0.4	3
72	Synthesis and Characterisation of Strontium and Magnesium Co-Substituted Biphasic Calcium Phosphates. Key Engineering Materials, 0, 529-530, 88-93.	0.4	3

#	Article	IF	CITATIONS
73	One-pot sonocatalyzed synthesis of sol–gel graphite electrodes containing gold nanoparticles for application in amperometric sensing. Journal of Materials Science, 2019, 54, 9553-9564.	1.7	3
74	Coordination properties of sulfonyl-N-aminoacids: Crystal and molecular structure of the [Zn(II) (N-(p-toluenesulfonyl)-L-glutaminate)2(H2O)2] complex. Journal of Chemical Crystallography, 1995, 25, 713-716.	0.5	1
75	In Vitro Evaluation of Zirconia Nanopowders. Key Engineering Materials, 2003, 254-256, 899-902.	0.4	0
76	Crystal structure of a new homochiral one-dimensional zincophosphate containingL-methionine. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 832-835.	0.2	0
77	Innovative use of thermally treated cement-asbestos in the production of foaming materials: Effect of composition, foaming agent, temperature and reaction time. Construction and Building Materials, 2022, 335, 127517.	3.2	0