Reinoud E Knops

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2764659/publications.pdf

Version: 2024-02-01

66 papers 4,896 citations

32 h-index 110387 64 g-index

67 all docs

67
docs citations

67 times ranked

2503 citing authors

#	Article	IF	Citations
1	An Entirely Subcutaneous Implantable Cardioverter–Defibrillator. New England Journal of Medicine, 2010, 363, 36-44.	27.0	686
2	Safety and Efficacy of the Totally Subcutaneous Implantable Defibrillator. Journal of the American College of Cardiology, 2015, 65, 1605-1615.	2.8	458
3	Worldwide experience with a totally subcutaneous implantable defibrillator: early results from the EFFORTLESS S-ICD Registry. European Heart Journal, 2014, 35, 1657-1665.	2.2	410
4	Subcutaneous or Transvenous Defibrillator Therapy. New England Journal of Medicine, 2020, 383, 526-536.	27.0	278
5	Implant and Midterm Outcomes of the Subcutaneous Implantable Cardioverter-Defibrillator Registry. Journal of the American College of Cardiology, 2017, 70, 830-841.	2.8	266
6	The Entirely Subcutaneous Implantable Cardioverter-Defibrillator. Journal of the American College of Cardiology, 2012, 60, 1933-1939.	2.8	205
7	Rationale and design of the PRAETORIAN trial: A Prospective, RAndomizEd comparison of subcuTaneOus and tRansvenous ImplANtable cardioverter-defibrillator therapy. American Heart Journal, 2012, 163, 753-760.e2.	2.7	156
8	Long-Term Clinical Outcomes of Subcutaneous Versus Transvenous Implantable Defibrillator Therapy. Journal of the American College of Cardiology, 2016, 68, 2047-2055.	2.8	151
9	Two-incision technique for implantation of the subcutaneous implantable cardioverter-defibrillator. Heart Rhythm, 2013, 10, 1240-1243.	0.7	147
10	Primary Results From the Understanding Outcomes With the S-ICD in Primary Prevention Patients With Low Ejection Fraction (UNTOUCHED) Trial. Circulation, 2021, 143, 7-17.	1.6	132
11	Prospective blinded evaluation of a novel sensing methodology designed to reduce inappropriate shocks by the subcutaneous implantable cardioverter-defibrillator. Heart Rhythm, 2018, 15, 1515-1522.	0.7	123
12	Inappropriate shocks in the subcutaneous ICD: Incidence, predictors and management. International Journal of Cardiology, 2015, 195, 126-133.	1.7	120
13	Which Patients Are Not Suitable for a Subcutaneous ICD: Incidence and Predictors of Failed QRSâ€Tâ€Wave Morphology Screening. Journal of Cardiovascular Electrophysiology, 2014, 25, 494-499.	1.7	117
14	Inappropriate subcutaneous implantable cardioverter-defibrillator shocks due to T-wave oversensing can be prevented: Implications for management. Heart Rhythm, 2014, 11, 426-434.	0.7	108
15	Chronic Performance of a LeadlessÂCardiac Pacemaker. Journal of the American College of Cardiology, 2015, 65, 1497-1504.	2.8	104
16	Implantable cardioverter-defibrillators in adults with congenital heart disease: a systematic review and meta-analysis. European Heart Journal, 2016, 37, 1439-1448.	2.2	101
17	The learning curve associated with the introduction of the subcutaneous implantable defibrillator. Europace, 2016, 18, 1010-1015.	1.7	95
18	A novel tool to evaluate the implant position and predict defibrillation success of the subcutaneous implantable cardioverter-defibrillator: The PRAETORIAN score. Heart Rhythm, 2019, 16, 403-410.	0.7	94

#	Article	IF	Citations
19	State of the art of leadless pacing. Europace, 2015, 17, 1508-1513.	1.7	73
20	Impact of Leadless Pacemaker Therapy on Cardiac and Atrioventricular Valve Function Through 12 Months of Follow-Up. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007124.	4.8	70
21	Determinants of Subcutaneous ImplantableÂCardioverter-Defibrillator Efficacy. JACC: Clinical Electrophysiology, 2017, 3, 405-414.	3.2	69
22	Leadless pacemaker implantation after explantation of infected conventional pacemaker systems: A viable solution?. Heart Rhythm, 2019, 16, 66-71.	0.7	68
23	Acute and 3-Month Performance ofÂaÂCommunicating Leadless Antitachycardia Pacemaker and Subcutaneous Implantable Defibrillator. JACC: Clinical Electrophysiology, 2017, 3, 1487-1498.	3.2	57
24	Implantation of the Subcutaneous Implantable Cardioverter-Defibrillator. Circulation: Arrhythmia and Electrophysiology, 2017, 10, e004663.	4.8	52
25	Subcutaneous implantable cardioverter-defibrillators: long-term results of the EFFORTLESS study. European Heart Journal, 2022, 43, 2037-2050.	2.2	47
26	Prevalence of subcutaneous implantable cardioverter-defibrillator candidacy based on template ECG screening in patients with hypertrophic cardiomyopathy. Heart Rhythm, 2016, 13, 457-463.	0.7	46
27	J Curve in Patients Randomly Assigned to Different Systolic Blood Pressure Targets. Circulation, 2017, 136, 2220-2229.	1.6	42
28	Rationale and design of the PRAETORIAN-DFT trial: A prospective randomized CompArative trial of SubcutanEous ImplanTable CardiOverter-DefibrillatoR ImplANtation with and without DeFibrillation testing. American Heart Journal, 2019, 214, 167-174.	2.7	41
29	Sixâ€year followâ€up of the initial Dutch subcutaneous implantable cardioverterâ€defibrillator cohort: Longâ€ŧerm complications, replacements, and battery longevity. Journal of Cardiovascular Electrophysiology, 2018, 29, 1010-1016.	1.7	39
30	Intensive Blood Pressure Lowering in Patients With and Patients Without Type 2 Diabetes: A Pooled Analysis From Two Randomized Trials. Diabetes Care, 2018, 41, 1142-1148.	8.6	37
31	Propensity score matched comparison of subcutaneous and transvenous implantable cardioverter-defibrillator therapy in the SIMPLE and EFFORTLESS studies. Europace, 2018, 20, f240-f248.	1.7	36
32	Leadless pacemaker versus transvenous single-chamber pacemaker therapy: A propensity score-matched analysis. Heart Rhythm, 2018, 15, 1387-1393.	0.7	35
33	Multicenter Automatic Defibrillator Implantation Trial–Subcutaneous Implantable Cardioverter Defibrillator (MADIT S-ICD): Design and clinical protocol. American Heart Journal, 2017, 189, 158-166.	2.7	31
34	End-of-life Management of Leadless Cardiac Pacemaker Therapy. Arrhythmia and Electrophysiology Review, 2017, 6, 129.	2.4	28
35	A morphology based deep learning model for atrial fibrillation detection using single cycle electrocardiographic samples. International Journal of Cardiology, 2020, 316, 130-136.	1.7	28
36	Efficacy and Safety of Appropriate Shocks and Antitachycardia Pacing in Transvenous and Subcutaneous Implantable Defibrillators: Analysis of All Appropriate Therapy in the PRAETORIAN Trial. Circulation, 2022, 145, 321-329.	1.6	28

#	Article	IF	CITATIONS
37	Postmortem Histopathological Examination of a Leadless Pacemaker Shows Partial Encapsulation After 19 Months. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1293-1295.	4.8	27
38	Evaluation of subcutaneous implantable cardioverter-defibrillator performance in patients with ion channelopathies from the EFFORTLESS cohort and comparison with a meta-analysis of transvenous ICD outcomes. Heart Rhythm O2, 2020, 1, 326-335.	1.7	26
39	Surgical Management of Implantation-Related Complications ofÂtheÂSubcutaneous Implantable Cardioverter-Defibrillator. JACC: Clinical Electrophysiology, 2016, 2, 89-96.	3.2	21
40	Healthâ€related quality of life impact of a transcatheter pacing system. Journal of Cardiovascular Electrophysiology, 2018, 29, 1697-1704.	1.7	20
41	Development and external validation of prediction models to predict implantable cardioverter-defibrillator efficacy in primary prevention of sudden cardiac death. Europace, 2021, 23, 887-897.	1.7	19
42	Midterm Safety and Performance of a Leadless Cardiac Pacemaker. Circulation, 2018, 137, 633-635.	1.6	18
43	Device orientation of a leadless pacemaker and subcutaneous implantable cardioverter-defibrillator in canine and human subjects and the effect on intrabody communication. Europace, 2018, 20, 1866-1871.	1.7	16
44	Leadless cardiac pacing systems: current status and future prospects. Expert Review of Medical Devices, 2019, 16, 923-930.	2.8	15
45	Long-term performance of a novel communicating antitachycardia pacing–enabled leadless pacemakerÂand subcutaneous implantable cardioverter-defibrillator system: A comprehensive preclinical study. Heart Rhythm, 2022, , .	0.7	15
46	Minimal defibrillation thresholds and the correlation with implant position in subcutaneous implantableâ€defibrillator patients. Journal of Cardiovascular Electrophysiology, 2019, 30, 2441-2447.	1.7	13
47	Successful replacement of the longest worldwide in situ Nanostim leadless cardiacÂpacemaker for a Micra Transcatheter Pacing System. Journal of Interventional Cardiac Electrophysiology, 2018, 51, 161-162.	1.3	12
48	Improving the care for female subcutaneous ICD patients: A qualitative study of gender-specific issues. International Journal of Cardiology, 2020, 317, 91-95.	1.7	12
49	Complications related to elective generator replacement of the subcutaneous implantable defibrillator. Europace, 2021, 23, 395-399.	1.7	12
50	Preclinical safety and electrical performance of novel atrial leadless pacemaker with dual-helix fixation. Heart Rhythm, 2022, 19, 776-781.	0.7	12
51	Tissues attached to retrieved leadless pacemakers: Histopathological evaluation of tissue composition in relation to implantation time and complications. Heart Rhythm, 2021, 18, 2101-2109.	0.7	11
52	The learning curve associated with the implantation of the Nanostim leadless pacemaker. Journal of Interventional Cardiac Electrophysiology, 2018, 53, 239-247.	1.3	10
53	Longâ€term followâ€up of the twoâ€incision implantation technique for the subcutaneous implantable cardioverterâ€defibrillator. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 1476-1480.	1.2	10
54	Feasibility of an Entirely Extracardiac, Minimally Invasive, Temporary Pacing System. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007182.	4.8	9

#	Article	IF	CITATIONS
55	Subcutaneous Implantable Cardioverter Defibrillator Lead Failure due to Twiddler Syndrome. PACE - Pacing and Clinical Electrophysiology, 2015, 38, 1369-1371.	1.2	7
56	Algorithm-Based Screening May Improve Patient Selection for the Subcutaneous Implantable Defibrillator. JACC: Clinical Electrophysiology, 2016, 2, 605-614.	3.2	5
57	ClinicalÂparameters to optimize patient selection for subcutaneous and transvenous implantable defibrillator therapy. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 990-995.	1.2	5
58	The Promise of Leadless Pacing: Based on Presentations at Nanostim Sponsored Symposium Held at the European Society of Cardiology Congress 2013, Amsterdam, The Netherlands, 2 September 2013. Arrhythmia and Electrophysiology Review, 2014, 3, 51-55.	2.4	5
59	A leadless solution. Europace, 2015, 17, 800-800.	1.7	4
60	Percutaneous leadless pacemaker implantation in a patient with bilateral venous thoracic outlet syndrome. Journal of Vascular Access, 2019, 20, 105-106.	0.9	4
61	Realâ€world performance of the atrial fibrillation monitor in patients with a subcutaneous ICD. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 1467-1475.	1.2	4
62	Rationale and design of the SafeHeart study: Development and testing of a mHealth tool for the prediction of arrhythmic events and implantable cardioverter-defibrillator therapy. Cardiovascular Digital Health Journal, 2021, 2, S11-S20.	1.3	3
63	Accelerometer-assessed physical behaviour and the association with clinical outcomes in implantable cardioverter defibrillator recipients: A systematic review. Cardiovascular Digital Health Journal, 2021, 3, 46-55.	1.3	2
64	Should the Subcutaneous Implantable Defibrillator Be the First Choice for Primary Prevention of Sudden Cardiac Death?. Revista Espanola De Cardiologia (English Ed), 2017, 70, 142-144.	0.6	1
65	Letter by Brouwer et al Regarding Article, "Ventricular Fibrillation Conversion Testing After Implantation of a Subcutaneous Implantable Cardioverter Defibrillator: Report From the National Cardiovascular Data Registry― Circulation, 2018, 138, 2970-2971.	1.6	0
66	High shock impedance during subcutaneous implantable defibrillator generator replacements: Authors' reply. Europace, 2022, 24, 350-351.	1.7	0