Daniela S Rajão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2764497/publications.pdf

Version: 2024-02-01

430442 414034 1,261 46 18 32 citations g-index h-index papers 53 53 53 1427 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Influenza antivirals and animal models. FEBS Open Bio, 2022, 12, 1142-1165.	1.0	18
2	Characterization of contemporary 2010.1 H3N2 swine influenza A viruses circulating in United States pigs. Virology, 2021, 553, 94-101.	1.1	14
3	Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. Scientific Reports, 2021, 11, 9609.	1.6	46
4	Development of a Novel Live Attenuated Influenza A Virus Vaccine Encoding the IgA-Inducing Protein. Vaccines, 2021, 9, 703.	2.1	8
5	Mutation E48K in PB1 Polymerase Subunit Improves Stability of a Candidate Live Attenuated Influenza B Virus Vaccine. Vaccines, 2021, 9, 800.	2.1	4
6	FluB-RAM and FluB-RANS: Genome Rearrangement as Safe and Efficacious Live Attenuated Influenza B Virus Vaccines. Vaccines, 2021, 9, 897.	2.1	2
7	Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals. Viruses, 2021, 13, 1919.	1.5	19
8	Mild and Severe SARS-CoV-2 Infection Induces Respiratory and Intestinal Microbiome Changes in the K18-hACE2 Transgenic Mouse Model. Microbiology Spectrum, 2021, 9, e0053621.	1.2	21
9	Reverse genetics for influenza B viruses and recent advances in vaccine development. Current Opinion in Virology, 2020, 44, 191-202.	2.6	7
10	Age-dependent pathogenesis of clade 2.3.4.4A H5N2 HPAIV in experimentally infected Broad Breasted White turkeys. Veterinary Microbiology, 2019, 231, 183-190.	0.8	5
11	Alphavirus-vectored hemagglutinin subunit vaccine provides partial protection against heterologous challenge in pigs. Vaccine, 2019, 37, 1533-1539.	1.7	10
12	Flexibility <i>In Vitro</i> of Amino Acid 226 in the Receptor-Binding Site of an H9 Subtype Influenza A Virus and Its Effect <i>In Vivo</i> on Virus Replication, Tropism, and Transmission. Journal of Virology, 2019, 93, .	1.5	34
13	Plasticity of Amino Acid Residue 145 Near the Receptor Binding Site of H3 Swine Influenza A Viruses and Its Impact on Receptor Binding and Antibody Recognition. Journal of Virology, 2019, 93, .	1.5	19
14	Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States. Virology, 2018, 518, 45-54.	1.1	64
15	The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease. Vaccine, 2018, 36, 6103-6110.	1.7	20
16	Comparison of Adjuvanted-Whole Inactivated Virus and Live-Attenuated Virus Vaccines against Challenge with Contemporary, Antigenically Distinct H3N2 Influenza A Viruses. Journal of Virology, 2018, 92, .	1.5	11
17	Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Frontiers in Microbiology, 2018, 9, 123.	1.5	108
18	Alternative Strategy for a Quadrivalent Live Attenuated Influenza Virus Vaccine. Journal of Virology, 2018, 92, .	1.5	10

#	Article	IF	Citations
19	Adaptation of Human Influenza Viruses to Swine. Frontiers in Veterinary Science, 2018, 5, 347.	0.9	61
20	Influenza A virus vaccines for swine. Veterinary Microbiology, 2017, 206, 35-44.	0.8	85
21	Pigs with Severe Combined Immunodeficiency Are Impaired in Controlling Influenza A Virus Infection. Journal of Innate Immunity, 2017, 9, 193-202.	1.8	12
22	Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs. Journal of Virology, 2017, 91, .	1.5	62
23	Detection and characterization of an H4N6 avian-lineage influenza A virus in pigs in the Midwestern United States. Virology, 2017, 511, 56-65.	1.1	26
24	Age at Vaccination and Timing of Infection Do Not Alter Vaccine-Associated Enhanced Respiratory Disease in Influenza A Virus-Infected Pigs. Vaccine Journal, 2016, 23, 470-482.	3.2	19
25	The Molecular Determinants of Antibody Recognition and Antigenic Drift in the H3 Hemagglutinin of Swine Influenza A Virus. Journal of Virology, 2016, 90, 8266-8280.	1.5	54
26	The avianâ€origin H3N2 canine influenza virus that recently emerged in the United States has limited replication in swine. Influenza and Other Respiratory Viruses, 2016, 10, 429-432.	1.5	8
27	Heterologous challenge in the presence of maternally-derived antibodies results in vaccine-associated enhanced respiratory disease in weaned piglets. Virology, 2016, 491, 79-88.	1.1	25
28	Vaccine-associated enhanced respiratory disease is influenced by haemagglutinin and neuraminidase in whole inactivated influenza virus vaccines. Journal of General Virology, 2016, 97, 1489-1499.	1.3	46
29	Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail. Journal of General Virology, 2015, 96, 2511-2521.	1.3	14
30	Swine as a Model for Influenza A Virus Infection and Immunity. ILAR Journal, 2015, 56, 44-52.	1.8	89
31	Comparative virulence of wild-type H1N1pdm09 influenza A isolates in swine. Veterinary Microbiology, 2015, 176, 40-49.	0.8	13
32	Distribution of antibodies against influenza virus in pigs from farrowâ€toâ€finish farms in M inas G erais state, B razil. Influenza and Other Respiratory Viruses, 2015, 9, 161-167.	1.5	8
33	Novel Reassortant Human-Like H3N2 and H3N1 Influenza A Viruses Detected in Pigs Are Virulent and Antigenically Distinct from Swine Viruses Endemic to the United States. Journal of Virology, 2015, 89, 11213-11222.	1.5	84
34	Genetic variability and phylogeny of the 5' long terminal repeat from Brazilian bovine leukemia virus. Genetics and Molecular Research, 2015, 14, 14530-14538.	0.3	2
35	Effects of bovine leukemia virus infection on crossbred and purebred dairy cattle productive performance in Brazil. Semina:Ciencias Agrarias, 2014, 35, 891.	0.1	4
36	Genetic variation of bovine leukemia virus (BLV) after replication in cell culture and experimental animals. Genetics and Molecular Research, 2014, 13, 1717-1723.	0.3	6

#	Article	lF	CITATION
37	Polymorphisms in the haemagglutinin gene influenced the viral shedding of pandemic 2009 influenza virus in swine. Journal of General Virology, 2014, 95, 2618-2626.	1.3	4
38	Pathogenesis and Vaccination of Influenza A Virus in Swine. Current Topics in Microbiology and Immunology, 2014, 385, 307-326.	0.7	39
39	Divergent immune responses and disease outcomes in piglets immunized with inactivated and attenuated H3N2 swine influenza vaccines in the presence of maternally-derived antibodies. Virology, 2014, 464-465, 45-54.	1.1	46
40	Influenza A virus hemagglutinin protein subunit vaccine elicits vaccine-associated enhanced respiratory disease in pigs. Vaccine, 2014, 32, 5170-5176.	1.7	41
41	Serological evidence of swine influenza in Brazil. Influenza and Other Respiratory Viruses, 2013, 7, 109-112.	1.5	18
42	Genetic characterization of influenza virus circulating in Brazilian pigs during 2009 and 2010 reveals a high prevalence of the pandemic H1N1 subtype. Influenza and Other Respiratory Viruses, 2013, 7, 783-790.	1.5	24
43	Comparative study of agar gel immunodiffusion (AGID) protocols for the diagnosis of equine infectious anemia in Brazil. Semina:Ciencias Agrarias, 2013, 34, 3909.	0.1	1
44	Diagnosis and clinic-pathological findings of influenza virus infection in Brazilian pigs. Pesquisa Veterinaria Brasileira, 2013, 33, 30-36.	0.5	4
45	Vero cells infected with the Lederle strain of canine distemper virus have increased Fas receptor signaling expression at 15 h post-infection. Genetics and Molecular Research, 2011, 10, 2527-2533.	0.3	12
46	Canine distemper virus induces apoptosis in cervical tumor derived cell lines. Virology Journal, 2011, 8, 334.	1.4	21