Ana Maria Cuervo

List of Publications by Citations

Source: https://exaly.com/author-pdf/2764342/ana-maria-cuervo-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 262
 56,133
 109
 236

 papers
 citations
 h-index
 g-index

 312
 63,672
 12.2
 8

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
262	Autophagy fights disease through cellular self-digestion. <i>Nature</i> , 2008 , 451, 1069-75	50.4	4910
261	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
260	Guidelines for the use and interpretation of assays for monitoring autophagy. <i>Autophagy</i> , 2012 , 8, 445-	-5 44 .2	2783
259	Autophagy regulates lipid metabolism. <i>Nature</i> , 2009 , 458, 1131-5	50.4	2485
258	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. <i>Autophagy</i> , 2008 , 4, 151-75	10.2	1920
257	Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. <i>Science</i> , 2004 , 305, 1292-5	33.3	1538
256	Geroscience: linking aging to chronic disease. <i>Cell</i> , 2014 , 159, 709-13	56.2	1068
255	Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. Journal of Neuropathology and Experimental Neurology, 2005 , 64, 113-22	3.1	1041
254	Molecular definitions of autophagy and related processes. <i>EMBO Journal</i> , 2017 , 36, 1811-1836	13	857
253	Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. <i>Cell</i> , 2010 , 141, 1146-58	56.2	816
252	Macroautophagya novel Beta-amyloid peptide-generating pathway activated in Alzheimerß disease. <i>Journal of Cell Biology</i> , 2005 , 171, 87-98	7.3	791
251	Autophagy gone awry in neurodegenerative diseases. <i>Nature Neuroscience</i> , 2010 , 13, 805-11	25.5	727
250	A receptor for the selective uptake and degradation of proteins by lysosomes. <i>Science</i> , 1996 , 273, 501-	3 33.3	711
249	Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. <i>Nature Cell Biology</i> , 2018 , 20, 332-343	23.4	686
248	Autophagy: in sickness and in health. <i>Trends in Cell Biology</i> , 2004 , 14, 70-7	18.3	676
247	Autophagy and aging: the importance of maintaining "clean" cells. <i>Autophagy</i> , 2005 , 1, 131-40	10.2	637
246	Cargo recognition failure is responsible for inefficient autophagy in Huntingtonß disease. <i>Nature Neuroscience</i> , 2010 , 13, 567-76	25.5	621

(2006-2010)

245	HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. <i>EMBO Journal</i> , 2010 , 29, 969-80	13	584
244	Chaperone-mediated autophagy: a unique way to enter the lysosome world. <i>Trends in Cell Biology</i> , 2012 , 22, 407-17	18.3	575
243	Microautophagy of cytosolic proteins by late endosomes. <i>Developmental Cell</i> , 2011 , 20, 131-9	10.2	574
242	Methods for monitoring autophagy from yeast to human. <i>Autophagy</i> , 2007 , 3, 181-206	10.2	560
241	Autophagy in the cellular energetic balance. <i>Cell Metabolism</i> , 2011 , 13, 495-504	24.6	558
240	Chaperone-mediated autophagy: roles in disease and aging. <i>Cell Research</i> , 2014 , 24, 92-104	24.7	553
239	Autophagy regulates adipose mass and differentiation in mice. <i>Journal of Clinical Investigation</i> , 2009 , 119, 3329-39	15.9	485
238	The coming of age of chaperone-mediated autophagy. <i>Nature Reviews Molecular Cell Biology</i> , 2018 , 19, 365-381	48.7	484
237	Activation of chaperone-mediated autophagy during oxidative stress. <i>Molecular Biology of the Cell</i> , 2004 , 15, 4829-40	3.5	477
236	Age-related decline in chaperone-mediated autophagy. <i>Journal of Biological Chemistry</i> , 2000 , 275, 3150	05 <u>5</u> .143	466
235	Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. <i>Journal of Clinical Investigation</i> , 2008 , 118, 777-88	15.9	461
234	Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. <i>Human Molecular Genetics</i> , 2009 , 18, 4153-70	5.6	448
233	Interplay of LRRK2 with chaperone-mediated autophagy. <i>Nature Neuroscience</i> , 2013 , 16, 394-406	25.5	438
232	Proteostasis and aging. <i>Nature Medicine</i> , 2015 , 21, 1406-15	50.5	436
231	Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson® disease. <i>EMBO Molecular Medicine</i> , 2012 , 4, 380-95	12	431
230	Autophagy and aging: keeping that old broom working. <i>Trends in Genetics</i> , 2008 , 24, 604-12	8.5	426
229	XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. <i>Genes and Development</i> , 2009 , 23, 2294-306	12.6	412
228	Oxidative stress and autophagy. Antioxidants and Redox Signaling, 2006, 8, 152-62	8.4	412

227	Consequences of the selective blockage of chaperone-mediated autophagy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 5805-10	11.5	398
226	Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. <i>Nature Medicine</i> , 2008 , 14, 959-65	50.5	395
225	Autophagy and neurodegeneration: when the cleaning crew goes on strike. <i>Lancet Neurology, The</i> , 2007 , 6, 352-61	24.1	389
224	The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. <i>Molecular and Cellular Biology</i> , 2008 , 28, 5747-63	4.8	363
223	Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. <i>Nature Cell Biology</i> , 2015 , 17, 759-70	23.4	352
222	Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer® disease ameliorates amyloid pathologies and memory deficits. <i>Brain</i> , 2011 , 134, 258-77	11.2	345
221	Lipophagy: connecting autophagy and lipid metabolism. <i>International Journal of Cell Biology</i> , 2012 , 2012, 282041	2.6	330
220	Autophagy: Many paths to the same end. Molecular and Cellular Biochemistry, 2004, 263, 55-72	4.2	328
219	Altered lipid content inhibits autophagic vesicular fusion. FASEB Journal, 2010, 24, 3052-65	0.9	324
218	Protein homeostasis and aging: The importance of exquisite quality control. <i>Ageing Research Reviews</i> , 2011 , 10, 205-15	12	309
217	IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. Journal of Cell Biology, 2009 , 187, 1083-99	7.3	287
216	Functional interaction between autophagy and ciliogenesis. <i>Nature</i> , 2013 , 502, 194-200	50.4	281
215	Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. <i>Cell Metabolism</i> , 2011 , 14, 173-83	24.6	277
214	Huntingtin functions as a scaffold for selective macroautophagy. <i>Nature Cell Biology</i> , 2015 , 17, 262-75	23.4	266
213	Lysosomal degradation of alpha-synuclein in vivo. <i>Journal of Biological Chemistry</i> , 2010 , 285, 13621-9	5.4	252
212	Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. <i>American Journal of Physiology - Cell Physiology</i> , 1995 , 269, C1200-8	5.4	252
211	Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer disease. <i>International Journal of Biochemistry and Cell Biology</i> , 2004 , 36, 2531-40	5.6	250
210	Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Molecular Biology of the Cell, 2008, 19, 2179-92	3.5	247

209	Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metabolism, 2016, 23, 1093-	-12141@	245
208	Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. <i>Neurobiology of Disease</i> , 2010 , 39, 423-38	7.5	235
207	Autophagy and human disease: emerging themes. <i>Current Opinion in Genetics and Development</i> , 2014 , 26, 16-23	4.9	231
206	Chaperone-mediated autophagy in aging and disease. <i>Current Topics in Developmental Biology</i> , 2006 , 73, 205-35	5.3	225
205	Integration of clearance mechanisms: the proteasome and autophagy. <i>Cold Spring Harbor Perspectives in Biology</i> , 2010 , 2, a006734	10.2	224
204	Chaperone-mediated autophagy in protein quality control. Current Opinion in Cell Biology, 2011, 23, 184	1-9	221
203	A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. <i>Journal of Biological Chemistry</i> , 1997 , 272, 5606-15	5.4	221
202	Regulation of lamp2a levels in the lysosomal membrane. <i>Traffic</i> , 2000 , 1, 570-83	5.7	219
201	Autophagy and disease: always two sides to a problem. <i>Journal of Pathology</i> , 2012 , 226, 255-73	9.4	211
200	Targeting the UPR transcription factor XBP1 protects against Huntington® disease through the regulation of FoxO1 and autophagy. <i>Human Molecular Genetics</i> , 2012 , 21, 2245-62	5.6	205
199	A comprehensive glossary of autophagy-related molecules and processes (2nd edition). <i>Autophagy</i> , 2011 , 7, 1273-94	10.2	205
198	Macroautophagy regulates energy metabolism during effector T cell activation. <i>Journal of Immunology</i> , 2010 , 185, 7349-57	5.3	204
197	Protein degradation and aging. Experimental Gerontology, 2005, 40, 622-33	4.5	202
196	Regulation of Liver Metabolism by Autophagy. <i>Gastroenterology</i> , 2016 , 150, 328-39	13.3	195
195	Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. Journal of Biological Chemistry, 2006 , 281, 20483-93	5.4	194
194	Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. <i>Nature Medicine</i> , 2017 , 23, 429-438	50.5	193
193	Chaperone-mediated autophagy: selectivity pays off. <i>Trends in Endocrinology and Metabolism</i> , 2010 , 21, 142-50	8.8	192
192	Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. <i>Cell Metabolism</i> , 2014 , 20, 417-32	24.6	191

191	When lysosomes get old. Experimental Gerontology, 2000, 35, 119-31	4.5	189
190	Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. <i>Seminars in Cell and Developmental Biology</i> , 2010 , 21, 719-26	7.5	186
189	Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. <i>Journal of Biological Chemistry</i> , 2018 , 293, 5414-5424	5.4	182
188	Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. <i>Human Molecular Genetics</i> , 2010 , 19, 3219-32	5.6	178
187	Proteostasis and the aging proteome in health and disease. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2014 , 69 Suppl 1, S33-8	6.4	173
186	Programmed mitophagy is essential for the glycolytic switch during cell differentiation. <i>EMBO Journal</i> , 2017 , 36, 1688-1706	13	171
185	Lysosomal mTORC2/PHLPP1/Akt Regulate Chaperone-Mediated Autophagy. <i>Molecular Cell</i> , 2015 , 59, 270-84	17.6	170
184	Degradation of proteasomes by lysosomes in rat liver. FEBS Journal, 1995, 227, 792-800		162
183	Chaperone-mediated autophagy is required for tumor growth. <i>Science Translational Medicine</i> , 2011 , 3, 109ra117	17.5	159
182	Identification of regulators of chaperone-mediated autophagy. <i>Molecular Cell</i> , 2010 , 39, 535-47	17.6	156
181	Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. <i>Journal of Cell Science</i> , 2007 , 120, 782-91	5.3	156
180	Patient-Specific iPSC-Derived Astrocytes Contribute to Non-Cell-Autonomous Neurodegeneration in Parkinson® Disease. <i>Stem Cell Reports</i> , 2019 , 12, 213-229	8	154
179	. Journal of Molecular Medicine, 1998 , 76, 6-12	5.5	154
178	Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. <i>EMBO Journal</i> , 2006 , 25, 3921-33	13	153
177	Inhibitory effect of dietary lipids on chaperone-mediated autophagy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E705-14	11.5	152
176	Pathophysiology of chaperone-mediated autophagy. <i>International Journal of Biochemistry and Cell Biology</i> , 2004 , 36, 2420-34	5.6	152
175	Selective autophagy as a potential therapeutic target for neurodegenerative disorders. <i>Lancet Neurology, The</i> , 2018 , 17, 802-815	24.1	151
174	Chaperone-mediated autophagy at a glance. <i>Journal of Cell Science</i> , 2011 , 124, 495-9	5.3	145

(2003-2015)

173	Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. <i>Nature Communications</i> , 2015 , 6, 6823	17.4	134
172	Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. <i>EMBO Journal</i> , 2003 , 22, 47-59	13	133
171	Autophagy: many paths to the same end. Molecular and Cellular Biochemistry, 2004, 263, 55-72	4.2	133
170	Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. <i>Nature Chemical Biology</i> , 2013 , 9, 374-82	11.7	131
169	Unique properties of lamp2a compared to other lamp2 isoforms. <i>Journal of Cell Science</i> , 2000 , 113 Pt 24, 4441-50	5.3	131
168	Autophagy-mediated clearance of aggresomes is not a universal phenomenon. <i>Human Molecular Genetics</i> , 2008 , 17, 2570-82	5.6	130
167	IkappaB is a substrate for a selective pathway of lysosomal proteolysis. <i>Molecular Biology of the Cell</i> , 1998 , 9, 1995-2010	3.5	130
166	Liver autophagy: much more than just taking out the trash. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2014 , 11, 187-200	24.2	127
165	Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. <i>Nature Chemical Biology</i> , 2009 , 5, 118-26	11.7	126
164	A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. <i>Nature Communications</i> , 2011 , 2, 386	17.4	123
163	A comprehensive glossary of autophagy-related molecules and processes. <i>Autophagy</i> , 2010 , 6, 438-48	10.2	123
162	Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation. <i>Nature Immunology</i> , 2014 , 15, 1046-54	19.1	121
161	Protein homeostasis and aging: taking care of proteins from the cradle to the grave. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2009 , 64, 167-70	6.4	121
160	AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. <i>Autophagy</i> , 2016 , 12, 432-8	10.2	118
159	Uptake and degradation of glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes. Journal of Biological Chemistry, 1993 , 268, 10463-70	5.4	115
158	Constitutive upregulation of chaperone-mediated autophagy in Huntingtonß disease. <i>Journal of Neuroscience</i> , 2011 , 31, 18492-505	6.6	114
157	Balance between autophagic pathways preserves retinal homeostasis. <i>Aging Cell</i> , 2013 , 12, 478-88	9.9	113
156	Characterization of chronic low-level proteasome inhibition on neural homeostasis. <i>Journal of Neurochemistry</i> , 2003 , 86, 489-97	6	109

155	Loss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging. <i>Aging Cell</i> , 2015 , 14, 249-64	9.9	108
154	Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus. <i>Journal of Biological Chemistry</i> , 2008 , 283, 4766-77	5.4	106
153	Chaperone-mediated autophagy. <i>Proceedings of the American Thoracic Society</i> , 2010 , 7, 29-39		104
152	Protein degradation, aggregation, and misfolding. <i>Movement Disorders</i> , 2010 , 25 Suppl 1, S49-54	7	104
151	Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. <i>Journal of Biological Chemistry</i> , 1994 , 269, 26374-26380	5.4	104
150	Methods to monitor chaperone-mediated autophagy. <i>Methods in Enzymology</i> , 2009 , 452, 297-324	1.7	103
149	Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. <i>Journal of Biological Chemistry</i> , 1994 , 269, 26374-80	5.4	103
148	Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin-dependent manner. <i>Molecular Biology of the Cell</i> , 2012 , 23, 2156-69	3.5	102
147	Autophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stress. <i>Molecular Aspects of Medicine</i> , 2006 , 27, 444-54	16.7	100
146	Connexins modulate autophagosome biogenesis. <i>Nature Cell Biology</i> , 2014 , 16, 401-14	23.4	98
146	Connexins modulate autophagosome biogenesis. <i>Nature Cell Biology</i> , 2014 , 16, 401-14 Selective autophagy: talking with the UPS. <i>Cell Biochemistry and Biophysics</i> , 2013 , 67, 3-13	23.4	98 92
			92
145	Selective autophagy: talking with the UPS. <i>Cell Biochemistry and Biophysics</i> , 2013 , 67, 3-13 Store-Operated Ca Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to	3.2	92
145	Selective autophagy: talking with the UPS. <i>Cell Biochemistry and Biophysics</i> , 2013 , 67, 3-13 Store-Operated Ca Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to Lipid Metabolism. <i>Cell Metabolism</i> , 2017 , 25, 698-712 Interplay of pathogenic forms of human tau with different autophagic pathways. <i>Aging Cell</i> , 2018 ,	3.2	92
145 144 143	Selective autophagy: talking with the UPS. <i>Cell Biochemistry and Biophysics</i> , 2013 , 67, 3-13 Store-Operated Ca Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to Lipid Metabolism. <i>Cell Metabolism</i> , 2017 , 25, 698-712 Interplay of pathogenic forms of human tau with different autophagic pathways. <i>Aging Cell</i> , 2018 , 17, e12692	3.2 24.6 9.9	92 89 89
145 144 143	Selective autophagy: talking with the UPS. <i>Cell Biochemistry and Biophysics</i> , 2013 , 67, 3-13 Store-Operated Ca Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to Lipid Metabolism. <i>Cell Metabolism</i> , 2017 , 25, 698-712 Interplay of pathogenic forms of human tau with different autophagic pathways. <i>Aging Cell</i> , 2018 , 17, e12692 Autophagy and the immune function in aging. <i>Current Opinion in Immunology</i> , 2014 , 29, 97-104	3.2 24.6 9.9 7.8	92 89 89 87
145 144 143 142	Selective autophagy: talking with the UPS. <i>Cell Biochemistry and Biophysics</i> , 2013 , 67, 3-13 Store-Operated Ca Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to Lipid Metabolism. <i>Cell Metabolism</i> , 2017 , 25, 698-712 Interplay of pathogenic forms of human tau with different autophagic pathways. <i>Aging Cell</i> , 2018 , 17, e12692 Autophagy and the immune function in aging. <i>Current Opinion in Immunology</i> , 2014 , 29, 97-104 The lipid kinase PI4KIII[preserves lysosomal identity. <i>EMBO Journal</i> , 2013 , 32, 324-39	3.2 24.6 9.9 7.8	92 89 89 87 86

(2019-2005)

137	Unifying nomenclature for the isoforms of the lysosomal membrane protein LAMP-2. <i>Traffic</i> , 2005 , 6, 1058-61	5.7	84	
136	Induction of autophagy by cystatin C: a mechanism that protects murine primary cortical neurons and neuronal cell lines. <i>PLoS ONE</i> , 2010 , 5, e9819	3.7	84	
135	Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. <i>Autophagy</i> , 2011 , 7, 788-9	10.2	80	
134	Chaperone-mediated autophagy in aging and neurodegeneration: lessons from alpha-synuclein. <i>Experimental Gerontology</i> , 2007 , 42, 120-8	4.5	79	
133	Autophagy in major human diseases. <i>EMBO Journal</i> , 2021 , 40, e108863	13	79	
132	Direct lysosomal uptake of alpha 2-microglobulin contributes to chemically induced nephropathy. <i>Kidney International</i> , 1999 , 55, 529-45	9.9	78	
131	Selective endosomal microautophagy is starvation-inducible in Drosophila. <i>Autophagy</i> , 2016 , 12, 1984-7	19992	78	
130	Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits. <i>Brain</i> , 2014 , 137, 3300-18	11.2	77	
129	Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation. <i>Autophagy</i> , 2010 , 6, 182-3	10.2	75	
128	Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. <i>PLoS Biology</i> , 2019 , 17, e3000301	9.7	73	
127	Esynuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. <i>Journal of Neuroscience</i> , 2015 , 35, 5724-42	6.6	72	
126	Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap. <i>Nature Communications</i> , 2018 , 9, 4962	17.4	71	
125	Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway. <i>Cell Reports</i> , 2012 , 1, 557-69	10.6	69	
124	Selective autophagy in the maintenance of cellular homeostasis in aging organisms. <i>Biogerontology</i> , 2012 , 13, 21-35	4.5	69	
123	Role of chaperone-mediated autophagy in metabolism. FEBS Journal, 2016, 283, 2403-13	5.7	69	
122	Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. <i>Neurobiology of Disease</i> , 2011 , 43, 29-37	7.5	66	
121	LAPTM5: a novel lysosomal-associated multispanning membrane protein preferentially expressed in hematopoietic cells. <i>Genomics</i> , 1996 , 35, 328-37	4.3	66	
120	Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated by APP-LITF (C99). Journal of Neuroscience, 2019, 39, 5255-5268	6.6	65	

119	Autophagy, nutrition and immunology. Molecular Aspects of Medicine, 2012, 33, 2-13	16.7	64
118	Autophagic pathways and metabolic stress. <i>Diabetes, Obesity and Metabolism</i> , 2010 , 12 Suppl 2, 4-14	6.7	64
117	Autophagy and neurodegeneration. Current Neurology and Neuroscience Reports, 2007, 7, 443-51	6.6	62
116	Selective degradation of annexins by chaperone-mediated autophagy. <i>Journal of Biological Chemistry</i> , 2000 , 275, 33329-35	5.4	62
115	Early cellular changes after blockage of chaperone-mediated autophagy. <i>Autophagy</i> , 2008 , 4, 442-56	10.2	60
114	Modulation of deregulated chaperone-mediated autophagy by a phosphopeptide. <i>Autophagy</i> , 2015 , 11, 472-86	10.2	59
113	Chasing the elusive mammalian microautophagy. <i>Autophagy</i> , 2011 , 7, 652-4	10.2	58
112	Chaperone-mediated autophagy. <i>Methods in Molecular Biology</i> , 2008 , 445, 227-44	1.4	57
111	Age-related oxidative stress compromises endosomal proteostasis. <i>Cell Reports</i> , 2012 , 2, 136-49	10.6	56
110	Lysosomes, a meeting point of proteins, chaperones, and proteases. <i>Journal of Molecular Medicine</i> , 1998 , 76, 6-12	5.5	56
109	Chaperone-mediated autophagy prevents cellular transformation by regulating MYC proteasomal degradation. <i>Autophagy</i> , 2017 , 13, 928-940	10.2	55
108	PM02734 (elisidepsin) induces caspase-independent cell death associated with features of autophagy, inhibition of the Akt/mTOR signaling pathway, and activation of death-associated protein kinase. Clinical Cancer Research, 2011, 17, 5353-66	12.9	54
107	Chronic expression of RCAN1-1L protein induces mitochondrial autophagy and metabolic shift from oxidative phosphorylation to glycolysis in neuronal cells. <i>Journal of Biological Chemistry</i> , 2012 , 287, 140.	8 8 -98	54
106	Autophagy and primary cilia: dual interplay. <i>Current Opinion in Cell Biology</i> , 2016 , 39, 1-7	9	53
105	Aging as a Biological Target for Prevention and Therapy. <i>JAMA - Journal of the American Medical Association</i> , 2018 , 320, 1321-1322	27.4	53
104	Proteasome failure promotes positioning of lysosomes around the aggresome via local block of microtubule-dependent transport. <i>Molecular and Cellular Biology</i> , 2014 , 34, 1336-48	4.8	52
103	Molecular determinants of selective clearance of protein inclusions by autophagy. <i>Nature Communications</i> , 2012 , 3, 1240	17.4	51
102	Humanin is an endogenous activator of chaperone-mediated autophagy. <i>Journal of Cell Biology</i> , 2018 , 217, 635-647	7.3	51

101	Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimerß disease Braak stages: a quantitative study in humans. <i>Neurobiology of Aging</i> , 2018 , 61, 1-12	5.6	50
100	Disease-modifying pathways in neurodegeneration. <i>Journal of Neuroscience</i> , 2006 , 26, 10349-57	6.6	50
99	Methods to study chaperone-mediated autophagy. <i>Methods</i> , 2015 , 75, 133-40	4.6	49
98	Chaperones in autophagy. <i>Pharmacological Research</i> , 2012 , 66, 484-93	10.2	49
97	Coordinate regulation of mutant NPC1 degradation by selective ER autophagy and MARCH6-dependent ERAD. <i>Nature Communications</i> , 2018 , 9, 3671	17.4	49
96	Autophagy and regulation of cilia function and assembly. Cell Death and Differentiation, 2015, 22, 389-9	7 12.7	48
95	Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 20655-20665	11.5	46
94	A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	46
93	Chaperone-mediated autophagy: Diceß RwildRidea about lysosomal selectivity. <i>Nature Reviews Molecular Cell Biology</i> , 2011 , 12, 535-41	48.7	46
92	Malfolded protein structure and proteostasis in lung diseases. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2014 , 189, 96-103	10.2	43
91	Promoting tau secretion and propagation by hyperactive p300/CBP via autophagy-lysosomal pathway in tauopathy. <i>Molecular Neurodegeneration</i> , 2020 , 15, 2	19	43
90	Autophagy in neurons: it is not all about food. <i>Trends in Molecular Medicine</i> , 2006 , 12, 461-4	11.5	41
89	Stimulatory effect of vitamin C on autophagy in glial cells. <i>Journal of Neurochemistry</i> , 2002 , 82, 538-49	6	41
88	Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. <i>Cell</i> , 2021 , 184, 2696-2714.e25	56.2	40
87	A2E, a pigment of RPE lipofuscin, is generated from the precursor, A2PE by a lysosomal enzyme activity. <i>Advances in Experimental Medicine and Biology</i> , 2008 , 613, 393-8	3.6	40
86	The ULK1-FBXW5-SEC23B nexus controls autophagy. <i>ELife</i> , 2018 , 7,	8.9	39
85	Cystinosin, the small GTPase Rab11, and the Rab7 effector RILP regulate intracellular trafficking of the chaperone-mediated autophagy receptor LAMP2A. <i>Journal of Biological Chemistry</i> , 2017 , 292, 10328	8 ⁵ 1 6 34	-6 ³⁸
84	Phosphorylation-regulated degradation of the tumor-suppressor form of PED by chaperone-mediated autophagy in lung cancer cells. <i>Journal of Cellular Physiology</i> , 2014 , 229, 1359-68	7	38

83	Chaperone-mediated autophagy sustains haematopoietic stem-cell function. <i>Nature</i> , 2021 , 591, 117-12	3 50.4	38
82	Structural and Biological Interaction of hsc-70 Protein with Phosphatidylserine in Endosomal Microautophagy. <i>Journal of Biological Chemistry</i> , 2016 , 291, 18096-106	5.4	37
81	Eps8 is recruited to lysosomes and subjected to chaperone-mediated autophagy in cancer cells. Experimental Cell Research, 2010 , 316, 1914-24	4.2	36
80	Autophagy and lipids: tightening the knot. Seminars in Immunopathology, 2010, 32, 343-53	12	34
79	Entering the lysosome through a transient gate by chaperone-mediated autophagy. <i>Autophagy</i> , 2008 , 4, 1101-3	10.2	34
78	Autophagic defects in aging: looking for an "emergency exit"?. <i>Cell Cycle</i> , 2006 , 5, 1292-6	4.7	33
77	Annexin A2 promotes phagophore assembly by enhancing Atg16L+ vesicle biogenesis and homotypic fusion. <i>Nature Communications</i> , 2015 , 6, 5856	17.4	32
76	HTT/Huntingtin in selective autophagy and Huntington disease: A foe or a friend within?. <i>Autophagy</i> , 2015 , 11, 858-60	10.2	32
75	Cell biology. Autophagy top chef. Science, 2011, 332, 1392-3	33.3	32
74	PKC/LLoss Induces Autophagy, Oxidative Phosphorylation, and NRF2 to Promote Liver Cancer Progression. <i>Cancer Cell</i> , 2020 , 38, 247-262.e11	24.3	31
73	Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2020 , 40, 1510-152	2 2 ·4	31
72	Pros and Cons of Chaperone-Mediated Autophagy in Cancer Biology. <i>Trends in Endocrinology and Metabolism</i> , 2020 , 31, 53-66	8.8	31
71	Dietary intake of polyphenols and major food sources in an institutionalised elderly population. Journal of Human Nutrition and Dietetics, 2014 , 27, 176-83	3.1	29
70	Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. <i>Nature Communications</i> , 2021 , 12, 2238	17.4	29
69	The role of autophagy in liver diseases: mechanisms and potential therapeutic targets. <i>BioMed Research International</i> , 2015 , 2015, 480508	3	28
68	Medical bioremediation: prospects for the application of microbial catabolic diversity to aging and several major age-related diseases. <i>Ageing Research Reviews</i> , 2005 , 4, 315-38	12	28
67	Age-associated changes in human CD4 T cells point to mitochondrial dysfunction consequent to impaired autophagy. <i>Aging</i> , 2019 , 11, 9234-9263	5.6	28
66	Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging. <i>Aging Cell</i> , 2018 , 17, e12777	9.9	25

(2020-2006)

65	Lysosomal chat maintains the balance. <i>Autophagy</i> , 2006 , 2, 325-7	10.2	24
64	Sarcosine Is Uniquely Modulated by Aging and Dietary Restriction in Rodents and Humans. <i>Cell Reports</i> , 2018 , 25, 663-676.e6	10.6	24
63	Disulfiram Treatment Normalizes Body Weight in Obese Mice. <i>Cell Metabolism</i> , 2020 , 32, 203-214.e4	24.6	22
62	Autophagy Is Required for Sortilin-Mediated Degradation of Apolipoprotein B100. <i>Circulation Research</i> , 2018 , 122, 568-582	15.7	22
61	Lipases in lysosomes, what for?. <i>Autophagy</i> , 2009 , 5, 866-7	10.2	22
60	Monitoring spatiotemporal changes in chaperone-mediated autophagy in vivo. <i>Nature Communications</i> , 2020 , 11, 645	17.4	21
59	Dietary lipids and aging compromise chaperone-mediated autophagy by similar mechanisms. <i>Autophagy</i> , 2012 , 8, 1152-4	10.2	21
58	Analysis of Chaperone-Mediated Autophagy. <i>Methods in Molecular Biology</i> , 2019 , 1880, 703-727	1.4	21
57	Autophagy and agingwhen "all you can eat" is yourself. <i>Science of Aging Knowledge Environment: SAGE KE</i> , 2003 , 2003, pe25		20
56	Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia. <i>Acta Neuropathologica</i> , 2019 , 137, 71-88	14.3	20
55	Inhibitory effect of intracellular lipid load on macroautophagy. Autophagy, 2010, 6, 825-827	10.2	19
54	Obatoclax kills anaplastic thyroid cancer cells by inducing lysosome neutralization and necrosis. <i>Oncotarget</i> , 2016 , 7, 34453-71	3.3	17
53	Chaperone-mediated autophagy and aging: a novel regulatory role of lipids revealed. <i>Autophagy</i> , 2007 , 3, 387-9	10.2	16
52	Chaperone-mediated autophagy: dedicated saviour and unfortunate victim in the neurodegeneration arena. <i>Biochemical Society Transactions</i> , 2013 , 41, 1483-8	5.1	13
51	Autophagy and the hallmarks of aging. Ageing Research Reviews, 2021, 72, 101468	12	13
50	In Vivo Remodeling of Altered Autophagy-Lysosomal Pathway by a Phosphopeptide in Lupus. <i>Cells</i> , 2020 , 9,	7.9	12
49	Age- and stress-associated C. elegans granulins impair lysosomal function and induce a compensatory HLH-30/TFEB transcriptional response. <i>PLoS Genetics</i> , 2019 , 15, e1008295	6	11
48	ARDD 2020: from aging mechanisms to interventions. <i>Aging</i> , 2020 , 12, 24484-24503	5.6	11

47	Degradation of Proteasomes by Lysosomes in Rat Liver. FEBS Journal, 2008, 227, 792-800		10
46	Lysosomal and network alterations in human mucopolysaccharidosis type VII iPSC-derived neurons. <i>Scientific Reports</i> , 2018 , 8, 16644	4.9	10
45	The different autophagy degradation pathways and neurodegeneration Neuron, 2022,	13.9	9
44	HIV Nef and Antiretroviral Therapy Have an Inhibitory Effect on Autophagy in Human Astrocytes that May Contribute to HIV-Associated Neurocognitive Disorders. <i>Cells</i> , 2020 , 9,	7.9	8
43	Temperature dependence of the toxic effects of phenytoin on peripheral neuromuscular function of the rat tail. <i>Neurotoxicology and Teratology</i> , 1990 , 12, 627-31	3.9	7
42	The negative effect of lipid challenge on autophagy inhibits T cell responses. <i>Autophagy</i> , 2020 , 16, 223-	238 .2	7
41	Microglial NF- B drives tau spreading and toxicity in a mouse model of tauopathy <i>Nature Communications</i> , 2022 , 13, 1969	17.4	7
40	Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates. <i>Nature Protocols</i> , 2015 , 10, 134-48	18.8	6
39	Chaperone-Mediated Autophagy Upregulation Rescues Megalin Expression and Localization in Cystinotic Proximal Tubule Cells. <i>Frontiers in Endocrinology</i> , 2019 , 10, 21	5.7	6
38	Nerve conduction velocity decrease and synaptic transmission alterations in caffeine-treated rats. <i>Neurotoxicology and Teratology</i> , 1994 , 16, 11-5	3.9	5
37	Elucidating the mechanisms by which disulfiram protects against obesity and metabolic syndrome. <i>Npj Aging and Mechanisms of Disease</i> , 2020 , 6, 8	5.5	5
36	MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells. <i>Nature Communications</i> , 2021 , 12, 2522	17.4	4
35	G₹ activation modulates autophagy by promoting mTORC1 signaling. <i>Nature Communications</i> , 2021 , 12, 4540	17.4	4
34	Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. <i>Nature Cell Biology</i> , 2021 ,	23.4	3
33	TSC1 loss increases risk for tauopathy by inducing tau acetylation and preventing tau clearance via chaperone-mediated autophagy. <i>Science Advances</i> , 2021 , 7, eabg3897	14.3	3
32	Chaperone-mediated autophagy: a gatekeeper of neuronal proteostasis. <i>Autophagy</i> , 2021 , 17, 2040-20	420.2	3
31	PKC/Inhibition activates an ULK2-mediated interferon response to repress tumorigenesis. <i>Molecular Cell</i> , 2021 , 81, 4509-4526.e10	17.6	3
30	Molecular damage in aging. <i>Nature Aging</i> , 2021 , 1, 1096-1106		3

(2021-2022)

29	Mutant glucocerebrosidase impairs Bynuclein degradation by blockade of chaperone-mediated autophagy <i>Science Advances</i> , 2022 , 8, eabm6393	14.3	3
28	Autophagy: An Alternative Degradation Mechanism for Misfolded Proteins 2010 , 113-129		2
27	Protective role of chaperone-mediated autophagy against atherosclerosis <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2121133119	11.5	2
26	S3D2D2: Autophagy and neurodegeneration 2013 , 9, P512-P512		1
25	Retraction: PM02734 (elisidepsin) induces caspase-independent cell death associated with features of autophagy, inhibition of the Akt/mTOR signaling pathway, and activation of death-associated protein kinase. <i>Clinical Cancer Research</i> , 2013 , 19, 4900	12.9	1
24	TSC1 loss-of-function increases risk for tauopathy by inducing tau acetylation and preventing autophagy-mediated tau clearance		1
23	Changes in Lysosomes and Their Autophagic Function in Aging: The Comparative Biology of Lysosomal Function 2010 , 201-226		1
22	Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis		1
21	Proteostasis and aging		1
20	C. elegansgranulins promote an age-associated decline in protein homeostasis via lysosomal protease inhibition		1
19	Assessment of mammalian endosomal microautophagy. Methods in Cell Biology, 2021, 164, 167-185	1.8	1
18	Beth Cindy Levine (1960-2020). <i>Science</i> , 2020 , 369, 378	33.3	1
17	HIV Increases the Inhibitory Impact of Morphine and Antiretrovirals on Autophagy in Primary Human Macrophages: Contributions to Neuropathogenesis. <i>Cells</i> , 2021 , 10,	7.9	1
16	Einstein-Nathan Shock Center: translating the hallmarks of aging to extend human health span. <i>GeroScience</i> , 2021 , 43, 2167-2182	8.9	1
15	Protein Degradation and the Lysosomal System 2020 , 122-136		1
14	Defining the role of PLD3 in Alzheimerß disease pathology <i>Alzheimerls and Dementia</i> , 2021 , 17 Suppl 2, e058730	1.2	1
13	Circadian remodeling of the proteome by chaperone-mediated autophagy Autophagy, 2022, 1-3	10.2	О
12	Immunosurveillance, interferon, and autophagic networking in cancer: the PRKCI-ULK2 paradigm <i>Autophagy</i> , 2021 , 1-2	10.2	О

11	Methamphetamine Dysregulates Macrophage Functions and Autophagy to Mediate HIV Neuropathogenesis. <i>Biomedicines</i> , 2022 , 10, 1257	4.8	О
10	Protein Homeostasis and Aging 2011 , 297-317		
9	Autophagy IThe Liaison between the Lysosomal System and Cell Death63-73		
8	Selective Autophagy in the Pathogenesis of Parkinson® Disease 2008, 409-422		
7	Autophagy in Disease and Aging 2006 , 69-104		
6	Chaperone-Mediated Autophagy Ensures Hematopoietic Stem Cell Maintenance. <i>Blood</i> , 2019 , 134, 272	2-2 <u>72</u>	
5	Autophagy and aging: connecting nutritional-regulated catabolism and cellular quality control. <i>FASEB Journal</i> , 2009 , 23, 425.3	0.9	
4	Selective autophagy in cellular quality control. <i>Research and Perspectives in Alzheimerls Disease</i> , 2013 , 63-75		
3	Selective Autophagy: A Link Across the Hallmarks of Aging. Innovation in Aging, 2021, 5, 510-510	0.1	
2	Protein Degradation and the Lysosomal System173-189		
1	Defining the role of PLD3 in Alzheimer disease pathology <i>Alzheimerls and Dementia</i> , 2021 , 17 Suppl 3, e054611	1.2	