Scott K Nagle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2763879/publications.pdf Version: 2024-02-01

SCOTT K NACLE

#	Article	IF	CITATIONS
1	Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. Journal of Clinical Investigation, 2018, 128, 997-1009.	8.2	337
2	Optimized 3D ultrashort echo time pulmonary MRI. Magnetic Resonance in Medicine, 2013, 70, 1241-1250.	3.0	266
3	Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11652-11657.	7.1	194
4	Detection of Small Pulmonary Nodules with Ultrashort Echo Time Sequences in Oncology Patients by Using a PET/MR System. Radiology, 2016, 278, 239-246.	7.3	124
5	Hepatobiliary MR imaging with gadoliniumâ€based contrast agents. Journal of Magnetic Resonance Imaging, 2012, 35, 492-511.	3.4	121
6	Functional imaging of the lungs with gas agents. Journal of Magnetic Resonance Imaging, 2016, 43, 295-315.	3.4	98
7	Quantitative Magnetic Resonance Imaging of Pulmonary Hypertension. Journal of Thoracic Imaging, 2014, 29, 68-79.	1.5	68
8	Oxygenâ€enhanced 3D radial ultrashort echo time magnetic resonance imaging in the healthy human lung. NMR in Biomedicine, 2014, 27, 1535-1541.	2.8	62
9	Effectiveness of MR angiography for the primary diagnosis of acute pulmonary embolism: Clinical outcomes at 3 months and 1 year. Journal of Magnetic Resonance Imaging, 2013, 38, 914-925.	3.4	61
10	Optimized highâ€resolution contrastâ€enhanced hepatobiliary imaging at 3 tesla: A crossâ€over comparison of gadobenate dimeglumine and gadoxetic acid. Journal of Magnetic Resonance Imaging, 2011, 34, 585-594.	3.4	55
11	Motion robust high resolution 3D freeâ€breathing pulmonary MRI using dynamic 3D image selfâ€navigator. Magnetic Resonance in Medicine, 2018, 79, 2954-2967.	3.0	53
12	High resolution navigated threeâ€dimensional T ₁ â€weighted hepatobiliary MRI using gadoxetic acid optimized for 1.5 tesla. Journal of Magnetic Resonance Imaging, 2012, 36, 890-899.	3.4	51
13	Hyperpolarized Helium-3 MRI of exercise-induced bronchoconstriction during challenge and therapy. Journal of Magnetic Resonance Imaging, 2014, 39, 1230-1237.	3.4	48
14	Pulmonary ventilation imaging in asthma and cystic fibrosis using oxygenâ€enhanced 3D radial ultrashort echo time MRI. Journal of Magnetic Resonance Imaging, 2018, 47, 1287-1297.	3.4	45
15	"Structure-Function Imaging of Lung Disease Using Ultrashort Echo Time MRI― Academic Radiology, 2019, 26, 431-441.	2.5	37
16	Gadoxetic acid–enhanced T1â€weighted MR cholangiography in primary sclerosing cholangitis. Journal of Magnetic Resonance Imaging, 2012, 36, 632-640.	3.4	34
17	Exercise-induced Bronchoconstriction: Reproducibility of Hyperpolarized ³ He MR Imaging. Radiology, 2013, 266, 618-625.	7.3	34
18	Contrast enhanced pulmonary magnetic resonance angiography for pulmonary embolism: Building a successful program. European Journal of Radiology, 2016, 85, 553-563.	2.6	32

SCOTT K NAGLE

#	Article	IF	CITATIONS
19	Regional Heterogeneity of Lobar Ventilation in Asthma Using Hyperpolarized Helium-3 MRI. Academic Radiology, 2018, 25, 169-178.	2.5	29
20	Threeâ€dimensional pulmonary perfusion MRI with radial ultrashort echo time and spatial–temporal constrained reconstruction. Magnetic Resonance in Medicine, 2015, 73, 555-564.	3.0	28
21	Semiautomated Ventilation Defect Quantification in Exercise-induced Bronchoconstriction Using Hyperpolarized Helium-3 Magnetic Resonance Imaging. Academic Radiology, 2016, 23, 1104-1114.	2.5	28
22	Pulmonary Embolism Detection with Three-dimensional Ultrashort Echo Time MR Imaging: Experimental Study in Canines. Radiology, 2016, 278, 413-421.	7.3	28
23	Three-dimensional Isotropic Functional Imaging of Cystic Fibrosis Using Oxygen-enhanced MRI: Comparison with Hyperpolarized ³ He MRI. Radiology, 2019, 290, 229-237.	7.3	24
24	Simultaneous MRI of lung structure and perfusion in a single breathhold. Journal of Magnetic Resonance Imaging, 2015, 41, 52-59.	3.4	23
25	Contrast-enhanced pulmonary MRA for the primary diagnosis of pulmonary embolism: current state of the art and future directions. British Journal of Radiology, 2017, 90, 20160901.	2.2	22
26	Deep convolutional neural networks with multiplane consensus labeling for lung function quantification using UTE proton MRI. Journal of Magnetic Resonance Imaging, 2019, 50, 1169-1181.	3.4	22
27	Mucus Plugs in Asthma at CT Associated with Regional Ventilation Defects at ³ He MRI. Radiology, 2022, 303, 184-190.	7.3	22
28	Redistribution of inhaled hyperpolarized ³ He gas during breath-hold differs by asthma severity. Journal of Applied Physiology, 2016, 120, 526-536.	2.5	19
29	Comparison of Models and Contrast Agents for Improved Signal and Signal Linearity in Dynamic Contrast-Enhanced Pulmonary Magnetic Resonance Imaging. Investigative Radiology, 2015, 50, 174-178.	6.2	18
30	Negative D-dimer testing excludes pulmonary embolism in non-high risk patients in the emergency department. Emergency Radiology, 2017, 24, 273-280.	1.8	17
31	Guidance for computed tomography (CT) imaging of the lungs for patients with cystic fibrosis (CF) in research studies. Journal of Cystic Fibrosis, 2020, 19, 176-183.	0.7	17
32	MRI for acute chest pain: Current state of the Art. Journal of Magnetic Resonance Imaging, 2013, 37, 1290-1300.	3.4	16
33	Pulmonary MRA: Differentiation of pulmonary embolism from truncation artefact. European Radiology, 2014, 24, 1942-1949.	4.5	16
34	Clinical outcomes after magnetic resonance angiography (MRA) versus computed tomographic angiography (CTA) for pulmonary embolism evaluation. Emergency Radiology, 2018, 25, 469-477.	1.8	15
35	Incidence of actionable findings on contrast enhanced magnetic resonance angiography ordered for pulmonary embolism evaluation. European Journal of Radiology, 2016, 85, 1383-1389.	2.6	14
36	Comparison of gadoliniumâ€enhanced and ferumoxytolâ€enhanced conventional and UTEâ€MRA for the depiction of the pulmonary vasculature. Magnetic Resonance in Medicine, 2019, 82, 1660-1670.	3.0	14

SCOTT K NAGLE

#	Article	IF	CITATIONS
37	Pulmonary perfusion MRI using interleaved variable density sampling and HighlY constrained cartesian reconstruction (HYCR). Journal of Magnetic Resonance Imaging, 2013, 38, 751-756.	3.4	11
38	Magnetic Resonance Imaging for the Evaluation of Pulmonary Embolism. Topics in Magnetic Resonance Imaging, 2017, 26, 145-151.	1.2	11
39	Towards an understanding of the structural and functional properties of MscL, a mechanosensitive channel in bacteria. Biology of the Cell, 1996, 87, 1-8.	2.0	11
40	Blind Compressed Sensing Enables 3-Dimensional Dynamic Free Breathing Magnetic Resonance Imaging of Lung Volumes and Diaphragm Motion. Investigative Radiology, 2016, 51, 387-399.	6.2	10
41	Combined gadoxetic acid and gadofosveset enhanced liver MRI for detection and characterization of liver metastases. European Radiology, 2017, 27, 32-40.	4.5	10
42	Inter- and intra-observer repeatability of aortic annulus measurements on screening CT for transcatheter aortic valve replacement (TAVR): Implications for appropriate device sizing. European Journal of Radiology, 2018, 105, 209-215.	2.6	9
43	Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study. Medical Physics, 2015, 42, 5919-5927.	3.0	8
44	Wholeâ€heart chemical shift encoded water–fat MRI. Magnetic Resonance in Medicine, 2014, 72, 718-725.	3.0	6
45	Anemia is not a risk factor for developing pulmonary embolism. American Journal of Emergency Medicine, 2017, 35, 146-149.	1.6	6
46	Locally focused MRI of interventions. Journal of Magnetic Resonance Imaging, 1998, 8, 1288-1295.	3.4	5
47	Application of direct virtual coil to dynamic contrastâ€enhanced MRI and MR angiography with dataâ€driven parallel imaging. Magnetic Resonance in Medicine, 2014, 71, 783-789.	3.0	2
48	Magnetic Resonance Imaging of the Lung: Cystic Fibrosis. Medical Radiology, 2017, , 277-291.	0.1	2
49	Downstream Imaging Utilization After MR Angiography Versus CT Angiography for the InitialÂEvaluation of Pulmonary Embolism. Journal of the American College of Radiology, 2018, 15, 1692-1697.	1.8	1
50	Left ventricular assist device pseudo-thrombosis due to use of metal artifact reduction algorithm on cardiac CT. Journal of Cardiovascular Computed Tomography, 2022, 16, e1-e2.	1.3	1
51	Left upper lobe and lingula torsion after transplantation of single lung with complete major and minor fissures: A case report. Clinical Imaging, 2022, 84, 79-83.	1.5	1
52	CE-MRA in the primary diagnosis of pulmonary embolism: Building a team to start a clinically relevant program. , 0, , 31-36.		1
53	Patient Preferences for Diagnostic Imaging: CTA vs MRA When Diagnosing Pulmonary Embolism Wisconsin Medical Journal, 2021, 120, 286-292.	0.3	0