## Jeppe C Dyre

# List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2763818/jeppe-c-dyre-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 209
 10,949
 53
 99

 papers
 citations
 h-index
 g-index

 220
 11,963
 5
 6.94

 ext. papers
 ext. citations
 avg, IF
 L-index

| #   | Paper                                                                                                                                                                 | IF    | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 209 | Lines of invariant physics in the isotropic phase of the discotic Gay-Berne model. <i>Journal of Non-Crystalline Solids: X</i> , <b>2022</b> , 100085                 | 2.5   | O         |
| 208 | Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time <i>Science Advances</i> , <b>2022</b> , 8, eabl9809                  | 14.3  | 4         |
| 207 | Generalized hydrodynamics of the Lennard-Jones liquid in view of hidden scale invariance <i>Physical Review E</i> , <b>2021</b> , 104, 054126                         | 2.4   | O         |
| 206 | Hidden Scale Invariance in Polydisperse Mixtures of Exponential Repulsive Particles. <i>Journal of Physical Chemistry B</i> , <b>2021</b> , 125, 317-327              | 3.4   | 1         |
| 205 | Isomorph Invariance of Higher-Order Structural Measures in Four Lennard-Jones Systems. <i>Molecules</i> , <b>2021</b> , 26,                                           | 4.8   | 3         |
| 204 | Single-parameter aging in a binary Lennard-Jones system. <i>Journal of Chemical Physics</i> , <b>2021</b> , 154, 0945                                                 | 043.9 | 1         |
| 203 | Solid-liquid coexistence of neon, argon, krypton, and xenon studied by simulations. <i>Journal of Chemical Physics</i> , <b>2021</b> , 154, 134501                    | 3.9   | 4         |
| 202 | Effectively one-dimensional phase diagram of CuZr liquids and glasses. <i>Physical Review B</i> , <b>2021</b> , 103,                                                  | 3.3   | 1         |
| 201 | Time-scale ordering in hydrogen- and van der Waals-bonded liquids. <i>Journal of Chemical Physics</i> , <b>2021</b> , 154, 184508                                     | 3.9   | 5         |
| 200 | Extreme case of density scaling: The Weeks-Chandler-Andersen system at low temperatures. <i>Physical Review E</i> , <b>2021</b> , 103, 062140                         | 2.4   | 4         |
| 199 | Structure of the Lennard-Jones liquid estimated from a single simulation. <i>Physical Review E</i> , <b>2021</b> , 103, 012110                                        | 2.4   | 2         |
| 198 | Testing the isomorph invariance of the bridge functions of Yukawa one-component plasmas.<br>Journal of Chemical Physics, <b>2021</b> , 154, 034501                    | 3.9   | 9         |
| 197 | Isomorphs in nanoconfined liquids. <i>Soft Matter</i> , <b>2021</b> , 17, 8662-8677                                                                                   | 3.6   | O         |
| 196 | Identity of the local and macroscopic dynamic elastic responses in supercooled 1-propanol. <i>Physical Chemistry Chemical Physics</i> , <b>2021</b> , 23, 16537-16541 | 3.6   | О         |
| 195 | Does mesoscopic elasticity control viscous slowing down in glassforming liquids?. <i>Journal of Chemical Physics</i> , <b>2021</b> , 155, 074502                      | 3.9   | 2         |
| 194 | Mechanistic model for the dielectric spectrum of a simple dielectric material. <i>Philosophical Magazine</i> , <b>2020</b> , 100, 2556-2567                           | 1.6   |           |
| 193 | The EXP pair-potential system. IV. Isotherms, isochores, and isomorphs in the two crystalline phases. <i>Journal of Chemical Physics</i> , <b>2020</b> , 152, 094505  | 3.9   | 5         |

### (2018-2020)

| 192 | Long-time structural relaxation of glass-forming liquids: Simple or stretched exponential?. <i>Journal of Chemical Physics</i> , <b>2020</b> , 152, 041103                                    | 3.9          | 5  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|--|
| 191 | Isomorph theory beyond thermal equilibrium. <i>Journal of Chemical Physics</i> , <b>2020</b> , 153, 134502                                                                                    | 3.9          | 2  |  |
| 190 | Excess-entropy scaling in supercooled binary mixtures. <i>Nature Communications</i> , <b>2020</b> , 11, 4300                                                                                  | 17.4         | 22 |  |
| 189 | Solid-like mean-square displacement in glass-forming liquids. <i>Journal of Chemical Physics</i> , <b>2020</b> , 152, 141101                                                                  | 3.9          | 12 |  |
| 188 | Fast contribution to the activation energy of a glass-forming liquid. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2019</b> , 116, 16736-16741 | 11.5         | 5  |  |
| 187 | Generalized single-parameter aging tests and their application to glycerol. <i>Journal of Chemical Physics</i> , <b>2019</b> , 150, 044501                                                    | 3.9          | 7  |  |
| 186 | Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid. <i>Journal of Physical Chemistry B</i> , <b>2019</b> , 123, 6345-6363                                        | 3.4          | 46 |  |
| 185 | Isomorph invariance and thermodynamics of repulsive dense bi-Yukawa one-component plasmas. <i>Physics of Plasmas</i> , <b>2019</b> , 26, 053705                                               | 2.1          | 7  |  |
| 184 | Assessing the utility of structure in amorphous materials. <i>Journal of Chemical Physics</i> , <b>2019</b> , 150, 11450                                                                      | 123.9        | 25 |  |
| 183 | Hidden scale invariance at high pressures in gold and five other face-centered-cubic metal crystals. <i>Physical Review E</i> , <b>2019</b> , 99, 022142                                      | 2.4          | 6  |  |
| 182 | Experimental Evidence for a State-Point-Dependent Density-Scaling Exponent of Liquid Dynamics. <i>Physical Review Letters</i> , <b>2019</b> , 122, 055501                                     | 7.4          | 20 |  |
| 181 | Crystallization Instability in Glass-Forming Mixtures. <i>Physical Review X</i> , <b>2019</b> , 9,                                                                                            | 9.1          | 17 |  |
| 180 | The EXP pair-potential system. III. Thermodynamic phase diagram. <i>Journal of Chemical Physics</i> , <b>2019</b> , 150, 174501                                                               | 3.9          | 5  |  |
| 179 | Transport coefficients of the Lennard-Jones fluid close to the freezing line. <i>Journal of Chemical Physics</i> , <b>2019</b> , 151, 204502                                                  | 3.9          | 15 |  |
| 178 | Revisiting the Stokes-Einstein relation without a hydrodynamic diameter. <i>Journal of Chemical Physics</i> , <b>2019</b> , 150, 021101                                                       | 3.9          | 40 |  |
| 177 | Communication: Simple liquids' high-density viscosity. <i>Journal of Chemical Physics</i> , <b>2018</b> , 148, 081101                                                                         | 3.9          | 17 |  |
| 176 | Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures. <i>Physical Review Letters</i> , <b>2018</b> , 120, 165501                                                                  | 7.4          | 31 |  |
| 175 | Hydrodynamic relaxations in dissipative particle dynamics. <i>Journal of Chemical Physics</i> , <b>2018</b> , 148, 0345                                                                       | <b>03</b> .9 | 1  |  |

| 174 | Isomorph theory of physical aging. <i>Journal of Chemical Physics</i> , <b>2018</b> , 148, 154502                                                                                               | 3.9  | 8   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 173 | ROSE bitumen: Mesoscopic model of bitumen and bituminous mixtures. <i>Journal of Chemical Physics</i> , <b>2018</b> , 149, 214901                                                               | 3.9  | 5   |
| 172 | Perspective: Excess-entropy scaling. <i>Journal of Chemical Physics</i> , <b>2018</b> , 149, 210901                                                                                             | 3.9  | 100 |
| 171 | The EXP pair-potential system. I. Fluid phase isotherms, isochores, and quasiuniversality. <i>Journal of Chemical Physics</i> , <b>2018</b> , 149, 114501                                       | 3.9  | 13  |
| 170 | The EXP pair-potential system. II. Fluid phase isomorphs. <i>Journal of Chemical Physics</i> , <b>2018</b> , 149, 114502                                                                        | 3.9  | 18  |
| 169 | Model for the alpha and beta shear-mechanical properties of supercooled liquids and its comparison to squalane data. <i>Journal of Chemical Physics</i> , <b>2017</b> , 146, 154504             | 3.9  | 8   |
| 168 | Connection between fragility, mean-squared displacement, and shear modulus in two van der Waals bonded glass-forming liquids. <i>Physical Review B</i> , <b>2017</b> , 95,                      | 3.3  | 15  |
| 167 | Toward broadband mechanical spectroscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2017</b> , 114, 8710-8715                                 | 11.5 | 17  |
| 166 | Density-scaling exponents and virial potential-energy correlation coefficients for the (2n, n) Lennard-Jones system. <i>Journal of Chemical Sciences</i> , <b>2017</b> , 129, 919-928           | 1.8  | 5   |
| 165 | Amorphous solids: Rayleigh scattering revisited. <i>Nature Materials</i> , <b>2016</b> , 15, 1150-1151                                                                                          | 27   | 3   |
| 164 | Thermodynamics of freezing and melting. <i>Nature Communications</i> , <b>2016</b> , 7, 12386                                                                                                   | 17.4 | 55  |
| 163 | Communication: Pseudoisomorphs in liquids with intramolecular degrees of freedom. <i>Journal of Chemical Physics</i> , <b>2016</b> , 145, 241103                                                | 3.9  | 10  |
| 162 | Communication: Studies of the Lennard-Jones fluid in 2, 3, and 4 dimensions highlight the need for a liquid-state 1/d expansion. <i>Journal of Chemical Physics</i> , <b>2016</b> , 144, 231101 | 3.9  | 22  |
| 161 | Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids. <i>AIP Advances</i> , <b>2016</b> , 6, 055019                        | 1.5  | 4   |
| 160 | Simple liquids' quasiuniversality and the hard-sphere paradigm. <i>Journal of Physics Condensed Matter</i> , <b>2016</b> , 28, 323001                                                           | 1.8  | 70  |
| 159 | Freezing and melting line invariants of the Lennard-Jones system. <i>Physical Chemistry Chemical Physics</i> , <b>2016</b> , 18, 14678-90                                                       | 3.6  | 27  |
| 158 | Pair Potential That Reproduces the Shape of Isochrones in Molecular Liquids. <i>Journal of Physical Chemistry B</i> , <b>2016</b> , 120, 7970-4                                                 | 3.4  | 2   |
| 157 | Continuum Nanofluidics. <i>Langmuir</i> , <b>2015</b> , 31, 13275-89                                                                                                                            | 4    | 30  |

| 156 | Communication: Direct tests of single-parameter aging. <i>Journal of Chemical Physics</i> , <b>2015</b> , 142, 241103                                      | 3.9    | 16  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| 155 | Isomorph theory prediction for the dielectric loss variation along an isochrone. <i>Journal of Non-Crystalline Solids</i> , <b>2015</b> , 407, 190-195     | 3.9    | 28  |
| 154 | A review of experiments testing the shoving model. <i>Journal of Non-Crystalline Solids</i> , <b>2015</b> , 407, 14-22                                     | 3.9    | 32  |
| 153 | Hidden scale invariance of metals. <i>Physical Review B</i> , <b>2015</b> , 92,                                                                            | 3.3    | 28  |
| 152 | Invariants in the Yukawa system's thermodynamic phase diagram. <i>Physics of Plasmas</i> , <b>2015</b> , 22, 073705                                        | 2.1    | 35  |
| 151 | Scaling of the dynamics of flexible Lennard-Jones chains: Effects of harmonic bonds. <i>Journal of Chemical Physics</i> , <b>2015</b> , 143, 194503        | 3.9    | 21  |
| 150 | Narayanaswamy's 1971 aging theory and material time. <i>Journal of Chemical Physics</i> , <b>2015</b> , 143, 114507                                        | 3.9    | 14  |
| 149 | Rolling Resistance Measurement and Model Development. <i>Journal of Transportation Engineering</i> , <b>2015</b> , 141, 04014075                           |        | 31  |
| 148 | Estimating the density-scaling exponent of a monatomic liquid from its pair potential. <i>Journal of Chemical Physics</i> , <b>2014</b> , 140, 124510      | 3.9    | 27  |
| 147 | The impact range for smooth wall-liquid interactions in nanoconfined liquids. <i>Soft Matter</i> , <b>2014</b> , 10, 432                                   | 245361 | 10  |
| 146 | Explaining why simple liquids are quasi-universal. <i>Nature Communications</i> , <b>2014</b> , 5, 5424                                                    | 17.4   | 53  |
| 145 | The dynamic bulk modulus of three glass-forming liquids. <i>Journal of Chemical Physics</i> , <b>2014</b> , 140, 24450                                     | 83.9   | 7   |
| 144 | Isomorph invariance of the structure and dynamics of classical crystals. <i>Physical Review B</i> , <b>2014</b> , 90,                                      | 3.3    | 32  |
| 143 | The mother of all pair potentials. <i>Colloid and Polymer Science</i> , <b>2014</b> , 292, 1971-1975                                                       | 2.4    | 10  |
| 142 | Oscillatory shear and high-pressure dielectric study of 5-methyl-3-heptanol. <i>Colloid and Polymer Science</i> , <b>2014</b> , 292, 1913-1921             | 2.4    | 34  |
| 141 | Hidden scale invariance in condensed matter. <i>Journal of Physical Chemistry B</i> , <b>2014</b> , 118, 10007-24                                          | 3.4    | 137 |
| 140 | Simplicity of condensed matter at its core: generic definition of a Roskilde-simple system. <i>Journal of Chemical Physics</i> , <b>2014</b> , 141, 204502 | 3.9    | 65  |
| 139 | Density scaling and quasiuniversality of flow-event statistics for athermal plastic flows. <i>Physical Review E</i> , <b>2014</b> , 90, 052304             | 2.4    | 14  |

| 138 | Scaling of the dynamics of flexible Lennard-Jones chains. <i>Journal of Chemical Physics</i> , <b>2014</b> , 141, 05490                                                                                                                         | 43.9 | 39 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 137 | Variation of the dynamic susceptibility along an isochrone. <i>Physical Review E</i> , <b>2014</b> , 90, 042310                                                                                                                                 | 2.4  | 7  |
| 136 | Cooee bitumen. II. Stability of linear asphaltene nanoaggregates. <i>Journal of Chemical Physics</i> , <b>2014</b> , 141, 144308                                                                                                                | 3.9  | 13 |
| 135 | Shear-modulus investigations of monohydroxy alcohols: evidence for a short-chain-polymer rheological response. <i>Physical Review Letters</i> , <b>2014</b> , 112, 098301                                                                       | 7.4  | 83 |
| 134 | Aging of CKN: modulus versus conductivity analysis. <i>Physical Review Letters</i> , <b>2013</b> , 110, 245901                                                                                                                                  | 7.4  | 6  |
| 133 | NVU perspective on simple liquids' quasiuniversality. <i>Physical Review E</i> , <b>2013</b> , 87, 022106                                                                                                                                       | 2.4  | 23 |
| 132 | Do the repulsive and attractive pair forces play separate roles for the physics of liquids?. <i>Journal of Physics Condensed Matter</i> , <b>2013</b> , 25, 032101                                                                              | 1.8  | 22 |
| 131 | Predicting how nanoconfinement changes the relaxation time of a supercooled liquid. <i>Physical Review Letters</i> , <b>2013</b> , 111, 235901                                                                                                  | 7.4  | 60 |
| 130 | Generalized extended Navier-Stokes theory: correlations in molecular fluids with intrinsic angular momentum. <i>Journal of Chemical Physics</i> , <b>2013</b> , 138, 034503                                                                     | 3.9  | 9  |
| 129 | Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear acoustic dynamics in glycerol and DC704 studied by time-domain Brillouin scattering. <i>Journal of Chemical Physics</i> , <b>2013</b> , 138, 12A544 | 3.9  | 45 |
| 128 | Four-component united-atom model of bitumen. <i>Journal of Chemical Physics</i> , <b>2013</b> , 138, 094508                                                                                                                                     | 3.9  | 68 |
| 127 | Cooee bitumen: chemical aging. <i>Journal of Chemical Physics</i> , <b>2013</b> , 139, 124506                                                                                                                                                   | 3.9  | 29 |
| 126 | Communication: Two measures of isochronal superposition. <i>Journal of Chemical Physics</i> , <b>2013</b> , 139, 101                                                                                                                            | 19.5 | 31 |
| 125 | Statistical mechanics of Roskilde liquids: configurational adiabats, specific heat contours, and density dependence of the scaling exponent. <i>Journal of Chemical Physics</i> , <b>2013</b> , 139, 184506                                     | 3.9  | 25 |
| 124 | Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducers. <i>Journal of Chemical Physics</i> , <b>2013</b> , 138, 12A543                                     | 3.9  | 32 |
| 123 | Isomorph invariance of Couette shear flows simulated by the SLLOD equations of motion. <i>Journal of Chemical Physics</i> , <b>2013</b> , 138, 154505                                                                                           | 3.9  | 26 |
| 122 | Isomorphs, hidden scale invariance, and quasiuniversality. <i>Physical Review E</i> , <b>2013</b> , 88, 042139                                                                                                                                  | 2.4  | 47 |
| 121 | Communication: The Rosenfeld-Tarazona expression for liquids' specific heat: a numerical investigation of eighteen systems. <i>Journal of Chemical Physics</i> , <b>2013</b> , 139, 171101                                                      | 3.9  | 24 |

| 120 | Dooling by Heating Demonstrating the Significance of the Longitudinal Specific Heat. <i>Physical Review X</i> , <b>2012</b> , 2,                                                                           | 9.1 | 3  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 119 | What Is a Simple Liquid?. <i>Physical Review X</i> , <b>2012</b> , 2,                                                                                                                                      | 9.1 | 85 |
| 118 | CO2 Emission Reduction by Exploitation of Rolling Resistance Modelling of Pavements. <i>Procedia, Social and Behavioral Sciences</i> , <b>2012</b> , 48, 311-320                                           |     | 7  |
| 117 | Isomorphs in model molecular liquids. <i>Journal of Physical Chemistry B</i> , <b>2012</b> , 116, 1018-34                                                                                                  | 3.4 | 48 |
| 116 | Isomorphs in the phase diagram of a model liquid without inverse power law repulsion. <i>European Physical Journal B</i> , <b>2012</b> , 85, 1                                                             | 1.2 | 15 |
| 115 | Simplistic Coulomb forces in molecular dynamics: comparing the Wolf and shifted-force approximations. <i>Journal of Physical Chemistry B</i> , <b>2012</b> , 116, 5738-43                                  | 3.4 | 44 |
| 114 | Scaling of viscous dynamics in simple liquids: theory, simulation and experiment. <i>New Journal of Physics</i> , <b>2012</b> , 14, 113035                                                                 | 2.9 | 99 |
| 113 | Communication: thermodynamics of condensed matter with strong pressure-energy correlations.<br>Journal of Chemical Physics, <b>2012</b> , 136, 061102                                                      | 3.9 | 62 |
| 112 | Energy conservation in molecular dynamics simulations of classical systems. <i>Journal of Chemical Physics</i> , <b>2012</b> , 136, 224106                                                                 | 3.9 | 24 |
| 111 | Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides. <i>Journal of Chemical Physics</i> , <b>2012</b> , 137, 064508                          | 3.9 | 33 |
| 110 | Experimental studies of Debye-like process and structural relaxation in mixtures of 2-ethyl-1-hexanol and 2-ethyl-1-hexyl bromide. <i>Journal of Chemical Physics</i> , <b>2012</b> , 137, 144502          | 3.9 | 36 |
| 109 | NVU dynamics. III. Simulating molecules at constant potential energy. <i>Journal of Chemical Physics</i> , <b>2012</b> , 137, 244101                                                                       | 3.9 | 6  |
| 108 | Measurement of the four-point susceptibility of an out-of-equilibrium colloidal solution of nanoparticles using time-resolved light scattering. <i>Physical Review Letters</i> , <b>2012</b> , 109, 097401 | 7.4 | 10 |
| 107 | Dynamic thermal expansivity of liquids near the glass transition. <i>Physical Review E</i> , <b>2012</b> , 85, 041501                                                                                      | 2.4 | 23 |
| 106 | Communication: Identical temperature dependence of the time scales of several linear-response functions of two glass-forming liquids. <i>Journal of Chemical Physics</i> , <b>2012</b> , 136, 081102       | 3.9 | 40 |
| 105 | The instantaneous shear modulus in the shoving model. <i>Journal of Chemical Physics</i> , <b>2012</b> , 136, 224108                                                                                       | 3.9 | 56 |
| 104 | Pressure-energy correlations in liquids. V. Isomorphs in generalized Lennard-Jones systems. <i>Journal of Chemical Physics</i> , <b>2011</b> , 134, 164505                                                 | 3.9 | 90 |
| 103 | Strongly correlating liquids and their isomorphs. <i>Journal of Non-Crystalline Solids</i> , <b>2011</b> , 357, 320-328                                                                                    | 3.9 | 35 |

| 102 | A combined measurement of thermal and mechanical relaxation. <i>Journal of Non-Crystalline Solids</i> , <b>2011</b> , 357, 346-350                                                                    | 3.9  | 3   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 101 | Beta relaxation in the shear mechanics of viscous liquids: Phenomenology and network modeling of the alpha-beta merging region. <i>Journal of Non-Crystalline Solids</i> , <b>2011</b> , 357, 267-273 | 3.9  | 19  |
| 100 | Predicting the density-scaling exponent of a glass-forming liquid from PrigogineDefay ratio measurements. <i>Nature Physics</i> , <b>2011</b> , 7, 816-821                                            | 16.2 | 108 |
| 99  | Nanoflow hydrodynamics. <i>Physical Review E</i> , <b>2011</b> , 84, 036311                                                                                                                           | 2.4  | 27  |
| 98  | Simulations of Crystallization in Supercooled Nanodroplets in the Presence of a Strong Exothermic Solute. <i>Journal of Physical Chemistry C</i> , <b>2011</b> , 115, 12808-12814                     | 3.8  | 6   |
| 97  | Communication: Shifted forces in molecular dynamics. <i>Journal of Chemical Physics</i> , <b>2011</b> , 134, 081102                                                                                   | 3.9  | 109 |
| 96  | NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface. <i>Journal of Chemical Physics</i> , <b>2011</b> , 135, 104101                                                        | 3.9  | 16  |
| 95  | NVU dynamics. II. Comparing to four other dynamics. <i>Journal of Chemical Physics</i> , <b>2011</b> , 135, 104102                                                                                    | 3.9  | 13  |
| 94  | Role of the first coordination shell in determining the equilibrium structure and dynamics of simple liquids. <i>Journal of Chemical Physics</i> , <b>2011</b> , 135, 134501                          | 3.9  | 27  |
| 93  | Predicting the effective temperature of a glass. <i>Physical Review Letters</i> , <b>2010</b> , 104, 125902                                                                                           | 7.4  | 36  |
| 92  | An electrical circuit model of the alpha-beta merging seen in dielectric relaxation of ultraviscous liquids. <i>Journal of Chemical Physics</i> , <b>2010</b> , 132, 024503                           | 3.9  | 15  |
| 91  | Generalized fluctuation-dissipation relation and effective temperature in off-equilibrium colloids. <i>Physical Review B</i> , <b>2010</b> , 81,                                                      | 3.3  | 24  |
| 90  | Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration.<br>Journal of Chemical Physics, <b>2010</b> , 133, 174514                                           | 3.9  | 72  |
| 89  | Repulsive reference potential reproducing the dynamics of a liquid with attractions. <i>Physical Review Letters</i> , <b>2010</b> , 105, 157801                                                       | 7.4  | 88  |
| 88  | Correlated volume-energy fluctuations of phospholipid membranes: a simulation study. <i>Journal of Physical Chemistry B</i> , <b>2010</b> , 114, 2124-30                                              | 3.4  | 15  |
| 87  | Aging effects manifested in the potential-energy landscape of a model glass former. <i>Physical Review E</i> , <b>2010</b> , 82, 021503                                                               | 2.4  | 19  |
| 86  | Connection between slow and fast dynamics of molecular liquids around the glass transition. <i>Physical Review E</i> , <b>2010</b> , 82, 021508                                                       | 2.4  | 28  |
| 85  | Geometry of slow structural fluctuations in a supercooled binary alloy. <i>Physical Review Letters</i> , <b>2010</b> , 104, 105701                                                                    | 7.4  | 94  |

### (2008-2010)

| 84                                           | Time reversible molecular dynamics algorithms with holonomic bond constraints in the NPH and NPT ensembles using molecular scaling. <i>Journal of Chemical Physics</i> , <b>2010</b> , 132, 154106                                                                                                                                                                                                                                                                                                                                                            | 3.9           | 5               |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|
| 83                                           | Time-reversible molecular dynamics algorithms with bond constraints. <i>Journal of Chemical Physics</i> , <b>2009</b> , 131, 064102                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.9           | 15              |
| 82                                           | Exponential distributions of collective flow-event properties in viscous liquid dynamics. <i>Physical Review Letters</i> , <b>2009</b> , 102, 055701                                                                                                                                                                                                                                                                                                                                                                                                          | 7.4           | 13              |
| 81                                           | Stability of supercooled binary liquid mixtures. <i>Journal of Chemical Physics</i> , <b>2009</b> , 130, 224501                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.9           | 63              |
| 80                                           | A brief critique of the Adam Gibbs entropy model. <i>Journal of Non-Crystalline Solids</i> , <b>2009</b> , 355, 624-627                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.9           | 61              |
| 79                                           | Fundamental questions relating to ion conduction in disordered solids. <i>Reports on Progress in Physics</i> , <b>2009</b> , 72, 046501                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.4          | 306             |
| 78                                           | Pressure-energy correlations in liquids. III. Statistical mechanics and thermodynamics of liquids with hidden scale invariance. <i>Journal of Chemical Physics</i> , <b>2009</b> , 131, 234503                                                                                                                                                                                                                                                                                                                                                                | 3.9           | 96              |
| 77                                           | Prevalence of approximate square root(t) relaxation for the dielectric alpha process in viscous organic liquids. <i>Journal of Chemical Physics</i> , <b>2009</b> , 130, 154508                                                                                                                                                                                                                                                                                                                                                                               | 3.9           | 69              |
| 76                                           | Hidden scale invariance in molecular van der Waals liquids: a simulation study. <i>Physical Review E</i> , <b>2009</b> , 80, 041502                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4           | 75              |
| 75                                           | Pressure-energy correlations in liquids. IV. "Isomorphs" in liquid phase diagrams. <i>Journal of Chemical Physics</i> , <b>2009</b> , 131, 234504                                                                                                                                                                                                                                                                                                                                                                                                             | 3.9           | 246             |
| 74                                           | Little evidence for dynamic divergences in ultraviscous molecular liquids. <i>Nature Physics</i> , <b>2008</b> , 4, 737-74                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>41</b> 6.2 | 275             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                 |
| 73                                           | Strong pressure-energy correlations in van der Waals liquids. <i>Physical Review Letters</i> , <b>2008</b> , 100, 015701                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.4           | 141             |
| 73<br>72                                     | Strong pressure-energy correlations in van der Waals liquids. <i>Physical Review Letters</i> , <b>2008</b> , 100, 015701  Supercooled liquid dynamics studied via shear-mechanical spectroscopy. <i>Journal of Physical Chemistry B</i> , <b>2008</b> , 112, 16320-5                                                                                                                                                                                                                                                                                          | 7·4<br>3·4    | 141<br>56       |
|                                              | Supercooled liquid dynamics studied via shear-mechanical spectroscopy. <i>Journal of Physical Chemistry B</i> , <b>2008</b> , 112, 16320-5  An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids.                                                                                                                                                                                                                                                                                                                      | , ,           | <u>'</u>        |
| 72                                           | Supercooled liquid dynamics studied via shear-mechanical spectroscopy. <i>Journal of Physical Chemistry B</i> , <b>2008</b> , 112, 16320-5  An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids. <i>Review of Scientific Instruments</i> , <b>2008</b> , 79, 045106  Pressure-energy correlations in liquids. II. Analysis and consequences. <i>Journal of Chemical Physics</i> .                                                                                                                                     | 3.4           | 56              |
| 72<br>71                                     | Supercooled liquid dynamics studied via shear-mechanical spectroscopy. <i>Journal of Physical Chemistry B</i> , <b>2008</b> , 112, 16320-5  An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids. <i>Review of Scientific Instruments</i> , <b>2008</b> , 79, 045106  Pressure-energy correlations in liquids. II. Analysis and consequences. <i>Journal of Chemical Physics</i> , <b>2008</b> , 129, 184508                                                                                                           | 3.4           | 56              |
| 7 <sup>2</sup> 7 <sup>1</sup> 7 <sup>0</sup> | Supercooled liquid dynamics studied via shear-mechanical spectroscopy. <i>Journal of Physical Chemistry B</i> , <b>2008</b> , 112, 16320-5  An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids. <i>Review of Scientific Instruments</i> , <b>2008</b> , 79, 045106  Pressure-energy correlations in liquids. II. Analysis and consequences. <i>Journal of Chemical Physics</i> , <b>2008</b> , 129, 184508  Pressure dependence of the dielectric loss minimum slope for ten molecular liquids. <i>Philosophical</i> | 3.4           | 56<br>29<br>154 |

| 66 | Glass-forming liquids: one or more Brder[parameters?. <i>Journal of Physics Condensed Matter</i> , <b>2008</b> , 20, 244113                                                | 1.8  | 28  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 65 | A cryostat and temperature control system optimized for measuring relaxations of glass-forming liquids. <i>Review of Scientific Instruments</i> , <b>2008</b> , 79, 045105 | 1.7  | 32  |
| 64 | Feasibility of a single-parameter description of equilibrium viscous liquid dynamics. <i>Physical Review E</i> , <b>2008</b> , 77, 011201                                  | 2.4  | 44  |
| 63 | Solution of the spherically symmetric linear thermoviscoelastic problem in the inertia-free limit. <i>Physical Review E</i> , <b>2008</b> , 78, 021501                     | 2.4  | 14  |
| 62 | ac Hopping conduction at extreme disorder takes place on the percolating cluster. <i>Physical Review Letters</i> , <b>2008</b> , 101, 025901                               | 7.4  | 61  |
| 61 | Mysteries of the glass transition. <i>Physics Today</i> , <b>2008</b> , 61, 15-15                                                                                          | 0.9  | 5   |
| 60 | Volume-Energy Correlations in the Slow Degrees of Freedom of Computer-Simulated Phospholipid Membranes. <i>AIP Conference Proceedings</i> , <b>2008</b> ,                  | O    | 3   |
| 59 | Can the Frequency Dependent Isobaric Specific Heat be Measured by Thermal Effusion Methods?. <i>AIP Conference Proceedings</i> , <b>2008</b> ,                             | Ο    | 5   |
| 58 | Solidity of viscous liquids. V. Long-wavelength dominance of the dynamics. <i>Physical Review E</i> , <b>2007</b> , 76, 041508                                             | 2.4  | 7   |
| 57 | Ten themes of viscous liquid dynamics. <i>Journal of Physics Condensed Matter</i> , <b>2007</b> , 19, 205105                                                               | 1.8  | 18  |
| 56 | Conventional methods fail to measure cp (omega) of glass-forming liquids. <i>Physical Review E</i> , <b>2007</b> , 75, 041502                                              | 2.4  | 34  |
| 55 | Dominance of shear elastic energy far from a point defect in a solid. <i>Physical Review B</i> , <b>2007</b> , 75,                                                         | 3.3  | 19  |
| 54 | Violations of conservation laws in viscous liquid dynamics. <i>Philosophical Magazine</i> , <b>2007</b> , 87, 497-502                                                      | 1.6  | 1   |
| 53 | Single-order-parameter description of glass-forming liquids: a one-frequency test. <i>Journal of Chemical Physics</i> , <b>2007</b> , 126, 074502                          | 3.9  | 35  |
| 52 | Elastic Models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids. <i>AIP Conference Proceedings</i> , <b>2006</b> ,                                           | Ο    | 4   |
| 51 | Colloquium: The glass transition and elastic models of glass-forming liquids. <i>Reviews of Modern Physics</i> , <b>2006</b> , 78, 953-972                                 | 40.5 | 884 |
| 50 | Solidity of viscous liquids. IV. Density fluctuations. <i>Physical Review E</i> , <b>2006</b> , 74, 021502                                                                 | 2.4  | 23  |
| 49 | Elastic models for the non-Arrhenius viscosity of glass-forming liquids. <i>Journal of Non-Crystalline Solids</i> , <b>2006</b> , 352, 4635-4642                           | 3.9  | 73  |

#### (1998-2006)

| 48                         | An energy landscape model for glass-forming liquids in three dimensions. <i>Journal of Non-Crystalline Solids</i> , <b>2006</b> , 352, 5210-5215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.9               | 2                                                       |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------|
| 47                         | A model for the generic alpha relaxation of viscous liquids. <i>Europhysics Letters</i> , <b>2005</b> , 71, 646-650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.6               | 14                                                      |
| 46                         | Solidity of viscous liquids. III. alpha relaxation. <i>Physical Review E</i> , <b>2005</b> , 72, 011501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.4               | 17                                                      |
| 45                         | Landscape equivalent of the shoving model. <i>Physical Review E</i> , <b>2004</b> , 69, 042501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4               | 92                                                      |
| 44                         | Is there a flativelband gap in ion conducting glasses?. Journal of Non-Crystalline Solids, 2003, 324, 192-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>95</b> .9      | 21                                                      |
| 43                         | Minimal model for Beta relaxation in viscous liquids. <i>Physical Review Letters</i> , <b>2003</b> , 91, 155703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.4               | 90                                                      |
| 42                         | Hopping Models and ac Universality. Physica Status Solidi (B): Basic Research, 2002, 230, 5-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3               | 44                                                      |
| 41                         | Computer simulations of the random barrier model. <i>Physical Chemistry Chemical Physics</i> , <b>2002</b> , 4, 3173-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33,78             | 31                                                      |
| 40                         | Time-temperature superposition in viscous liquids. <i>Physical Review Letters</i> , <b>2001</b> , 86, 1271-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.4               | 131                                                     |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                         |
| 39                         | Universality of ac conduction in disordered solids. <i>Reviews of Modern Physics</i> , <b>2000</b> , 72, 873-892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40.5              | 1008                                                    |
| 39                         | Universality of ac conduction in disordered solids. <i>Reviews of Modern Physics</i> , <b>2000</b> , 72, 873-892 beta relaxation of nonpolymeric liquids close to the glass transition. <i>Physical Review E</i> , <b>2000</b> , 62, 4435-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 1008<br>56                                              |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                         |
| 38                         | beta relaxation of nonpolymeric liquids close to the glass transition. <i>Physical Review E</i> , <b>2000</b> , 62, 4435-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 2.4             | 56                                                      |
| 38                         | beta relaxation of nonpolymeric liquids close to the glass transition. <i>Physical Review E</i> , <b>2000</b> , 62, 4435-8  Scaling and universality of ac conduction in disordered solids. <i>Physical Review Letters</i> , <b>2000</b> , 84, 310-3  Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid.                                                                                                                                                                                                                                                                                                                                                                    | 8 2.4<br>7·4      | 56<br>194                                               |
| 38<br>37<br>36             | beta relaxation of nonpolymeric liquids close to the glass transition. <i>Physical Review E</i> , <b>2000</b> , 62, 4435-8.  Scaling and universality of ac conduction in disordered solids. <i>Physical Review Letters</i> , <b>2000</b> , 84, 310-3.  Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid. <i>Journal of Chemical Physics</i> , <b>2000</b> , 112, 9834-9840.                                                                                                                                                                                                                                                                                               | 7·4<br>3·9        | 56<br>194<br>262                                        |
| 38<br>37<br>36<br>35       | beta relaxation of nonpolymeric liquids close to the glass transition. <i>Physical Review E</i> , <b>2000</b> , 62, 4435-8  Scaling and universality of ac conduction in disordered solids. <i>Physical Review Letters</i> , <b>2000</b> , 84, 310-3  Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid. <i>Journal of Chemical Physics</i> , <b>2000</b> , 112, 9834-9840  Solidity of viscous liquids. II. Anisotropic flow events. <i>Physical Review E</i> , <b>1999</b> , 59, 7243-5  Potential energy landscape signatures of slow dynamics in glass forming liquids. <i>Physica A</i> :                                                                              | 3·9<br>2.4        | <ul><li>56</li><li>194</li><li>262</li><li>17</li></ul> |
| 38<br>37<br>36<br>35<br>34 | beta relaxation of nonpolymeric liquids close to the glass transition. <i>Physical Review E</i> , <b>2000</b> , 62, 4435-65.  Scaling and universality of ac conduction in disordered solids. <i>Physical Review Letters</i> , <b>2000</b> , 84, 310-3.  Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid. <i>Journal of Chemical Physics</i> , <b>2000</b> , 112, 9834-9840.  Solidity of viscous liquids. II. Anisotropic flow events. <i>Physical Review E</i> , <b>1999</b> , 59, 7243-5.  Potential energy landscape signatures of slow dynamics in glass forming liquids. <i>Physica A: Statistical Mechanics and Its Applications</i> , <b>1999</b> , 270, 301-308. | 3.9<br>2.4<br>3.9 | 56 194 262 17 42                                        |

Structural Relaxation Monitored by Instantaneous Shear Modulus. Physical Review Letters, 1998, 81, 1037:403357 30 Local elastic expansion model for viscous-flow activation energies of glass-forming molecular 29 3.3 253 liquids. Physical Review B, 1996, 53, 2171-2174 Universality of anomalous diffusion in extremely disordered systems. Chemical Physics, 1996, 212, 61-682.3 28 12 Effective one-dimensionality of universal ac hopping conduction in the extreme disorder limit. 20 27 3.3 Physical Review B, 1996, 54, 14884-14887 26 Comment on "Dynamic viscosity of a simple glass-forming liquid". Physical Review Letters, 1996, 76, 15537.4 14 Fluctuation-dissipation theorem for frequency-dependent specific heat. Physical Review B, 1996, 25 3.3 44 54, 15754-15761 Universal time dependence of the mean-square displacement in extremely rugged energy 2.4 24 7 landscapes with equal minima. Physical Review E, 1995, 52, 2429-2433 Energy master equation: A low-temperature approximation to B\sections learns random-walk model. 23 3.3 97 Physical Review B, 1995, 51, 12276-12294 Lunar phase influence on global temperatures. Science, 1995, 269, 1284-5 6 2.2 33.3 Studies of ac hopping conduction at low temperatures. Physical Review B, 1994, 49, 11709-11720 21 3.3 33 An algorithm for fast determination of complex moduli. Journal of Rheology, 1994, 38, 1179-1193 20 4.1 1 Low temperature universality in computer simulations of the macroscopic model for ac conduction 19 3.9 4 in disordered solids. Journal of Non-Crystalline Solids, 1994, 172-174, 1419-1423 Universal low-temperature ac conductivity of macroscopically disordered nonmetals. Physical 18 3.3 119 Review B, 1993, 48, 12511-12526 Langevin models for shear-stress fluctuations in flows of viscoelastic liquids. Physical Review E, 17 2.4 **1993**, 48, 400-407 16 What is a Bell Makromolekulare Chemie Macromolecular Symposia, 1993, 76, 49-51 20 Universal ac conductivity of nonmetallic disordered solids at low temperatures. Physical Review B, 15 3.3 32 **1993**, 47, 9128-9131 Some remarks on ac conduction in disordered solids. Journal of Non-Crystalline Solids, 1991, 135, 219-226.9 165 14 A Dero-parameter Constitutive relation for simple shear viscoelasticity. Rheologica Acta, 1990, 29, 145-152.3 13

#### LIST OF PUBLICATIONS

| 12 | Maximum-entropy ansatz for nonlinear-response theory. <i>Physical Review A</i> , <b>1989</b> , 40, 2207-2210                                                            | 2.6     | 5   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 11 | Correlation effects in ionic conductivity. <i>Critical Reviews in Solid State and Materials Sciences</i> , <b>1989</b> , 15, 345-365                                    | 10.1    | 43  |
| 10 | The random free-energy barrier model for ac conduction in disordered solids. <i>Journal of Applied Physics</i> , <b>1988</b> , 64, 2456-2468                            | 2.5     | 761 |
| 9  | Unified formalism for excess current noise in random-walk models. <i>Physical Review B</i> , <b>1988</b> , 37, 10143-1                                                  | 19,1349 | 9   |
| 8  | A phenomenological model for the Meyer-Neldel rule: erratum. <i>Journal of Physics C: Solid State Physics</i> , <b>1988</b> , 21, 2431-2434                             |         | 12  |
| 7  | Master-equation appoach to the glass transition. <i>Physical Review Letters</i> , <b>1987</b> , 58, 792-795                                                             | 7.4     | 114 |
| 6  | Correlation effects in tracer diffusion and ionic conductivity. II. Solid State Ionics, 1986, 21, 139-142                                                               | 3.3     | 7   |
| 5  | Correlation effects in tracer diffusion and ionic conductivity. Solid State Ionics, 1986, 20, 203-207                                                                   | 3.3     | 9   |
| 4  | A phenomenological model for the Meyer-Neldel rule. <i>Journal of Physics C: Solid State Physics</i> , <b>1986</b> , 19, 5655-5664                                      |         | 125 |
| 3  | On the mechanism of glass ionic conductivity. <i>Journal of Non-Crystalline Solids</i> , <b>1986</b> , 88, 271-280                                                      | 3.9     | 56  |
| 2  | A simple model of ac hopping conductivity in disordered solids. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , <b>1985</b> , 108, 457-461 | 2.3     | 110 |
| 1  | A SIMPLE MODEL OF ac HOPPING CONDUCTIVITY. <i>Journal De Physique Colloque</i> , <b>1985</b> , 46, C8-343-C8-3                                                          | 47      | 5   |