Alex Adronov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2763693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light-harvesting dendrimers. Chemical Communications, 2000, , 1701-1710.	4.1	614
2	Polymerization from the Surface of Single-Walled Carbon Nanotubes â^' Preparation and Characterization of Nanocomposites. Journal of the American Chemical Society, 2003, 125, 16015-16024.	13.7	462
3	Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polystyrene by "Click― Coupling. Journal of the American Chemical Society, 2005, 127, 14518-14524.	13.7	426
4	Light Harvesting and Energy Transfer in Laserâ^'Dye-Labeled Poly(aryl ether) Dendrimers. Journal of the American Chemical Society, 2000, 122, 1175-1185.	13.7	386
5	Light Harvesting and Energy Transfer in Novel Convergently Constructed Dendrimers. Angewandte Chemie - International Edition, 1999, 38, 1422-1427.	13.8	327
6	Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polymers by Radical Coupling. Macromolecules, 2005, 38, 1172-1179.	4.8	205
7	Novel Two-Photon Absorbing Dendritic Structures. Chemistry of Materials, 2000, 12, 2838-2841.	6.7	182
8	Synthesis and Properties of Carborane-Functionalized Aliphatic Polyester Dendrimers. Journal of the American Chemical Society, 2005, 127, 12081-12089.	13.7	154
9	Noncovalent Functionalization and Solubilization of Carbon Nanotubes by Using a Conjugated Zn–Porphyrin Polymer. Chemistry - A European Journal, 2006, 12, 5053-5059.	3.3	149
10	Solubilizing single-walled carbon nanotubes with pyrene-functionalized block copolymers. Journal of Polymer Science Part A, 2006, 44, 1941-1951.	2.3	126
11	Soluble, Discrete Supramolecular Complexes of Single-Walled Carbon Nanotubes with Fluorene-Based Conjugated Polymers. Macromolecules, 2008, 41, 2304-2308.	4.8	120
12	Triply Fused ZnII–Porphyrin Oligomers: Synthesis, Properties, and Supramolecular Interactions with Single-Walled Carbon Nanotubes (SWNTs). Chemistry - A European Journal, 2006, 12, 6062-6070.	3.3	119
13	Polymer Grafting of Carbon Nanotubes Using Living Freeâ€Radical Polymerization. Polymer Reviews, 2007, 47, 265-290.	10.9	115
14	Synthesis, Radiolabeling, and Bio-imaging of High-Generation Polyester Dendrimers. Journal of the American Chemical Society, 2009, 131, 2906-2916.	13.7	108
15	Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization. Carbon, 2007, 45, 2327-2333.	10.3	100
16	Modular Approach to the Accelerated Convergent Growth of Laser Dye-Labeled Poly(aryl ether) Dendrimers Using a Novel Hypermonomer. Journal of Organic Chemistry, 1999, 64, 7474-7484.	3.2	94
17	Preparation and Utilization of Catalyst-Functionalized Single-Walled Carbon Nanotubes for Ring-Opening Metathesis Polymerization. Macromolecules, 2004, 37, 4755-4760.	4.8	87
18	Metal-Free Reduction of Secondary and Tertiary <i>N</i> -Phenyl Amides by Tris(pentafluorophenyl)boron-Catalyzed Hydrosilylation. Journal of Organic Chemistry, 2014, 79, 7728-7733.	3.2	81

#	Article	IF	CITATIONS
19	Selective and Reversible Noncovalent Functionalization of Single-Walled Carbon Nanotubes by a pH-Responsive Vinylogous Tetrathiafulvalene–Fluorene Copolymer. Journal of the American Chemical Society, 2014, 136, 970-977.	13.7	80
20	Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chemical Science, 2017, 8, 7292-7305.	7.4	78
21	Surface-Confined Light Harvesting, Energy Transfer, and Amplification of Fluorescence Emission in Chromophore-Labeled Self-Assembled Monolayers. Angewandte Chemie - International Edition, 2000, 39, 2163-2167.	13.8	76
22	Protein Resistance of PEG-Functionalized Dendronized Surfaces: Effect of PEG Molecular Weight and Dendron Generation. Macromolecules, 2008, 41, 4817-4823.	4.8	76
23	Synthesis and Study of the Absorption and Luminescence Properties of Polymers Containing Ru(BpyMe2)32+ Chromophores and Coumarin Laser Dyes. Macromolecules, 2002, 35, 5396-5404.	4.8	74
24	Cell adhesion and proliferation on hydrophilic dendritically modified surfaces. Biomaterials, 2008, 29, 4177-4186.	11.4	68
25	Suzuki Coupling Reactions for the Surface Functionalization of Single-Walled Carbon Nanotubes. Chemistry of Materials, 2006, 18, 5389-5391.	6.7	63
26	Amperometric Detection of Glucose Using a Conjugated Polyelectrolyte Complex with Single-Walled Carbon Nanotubes. Macromolecules, 2010, 43, 10376-10381.	4.8	63
27	"Click―coupling between alkyneâ€decorated multiwalled carbon nanotubes and reactive PDMAâ€PNIPAM micelles. Journal of Polymer Science Part A, 2008, 46, 7187-7199.	2.3	60
28	Synthesis and Steady-State Photophysical Properties of Dye-Labeled Dendrimers Having Novel Oligothiophene Cores:Â A Comparative Study. Chemistry of Materials, 2000, 12, 1463-1472.	6.7	59
29	Inkjet-printed bifunctional carbon nanotubes for pH sensing. Materials Letters, 2016, 176, 68-70.	2.6	58
30	Synthesis and Properties of Carborane-Containing Dendronized Polymers. Macromolecules, 2007, 40, 5678-5688.	4.8	54
31	Reinforcement of collagen with covalently-functionalized single-walled carbon nanotube crosslinkers. Journal of Materials Chemistry, 2010, 20, 2887.	6.7	51
32	Femtosecond Transient Absorption Studies of Energy Transfer within Chromophore-Labeled Dendrimers. Journal of Physical Chemistry B, 2001, 105, 1307-1312.	2.6	46
33	Properties of Poly(ethylene glycol) Hydrogels Cross-Linked via Strain-Promoted Alkyne–Azide Cycloaddition (SPAAC). Biomacromolecules, 2016, 17, 1093-1100.	5.4	46
34	Supramolecular Interactions of High Molecular Weight Poly(2,7-carbazole)s with Single-Walled Carbon Nanotubes. Macromolecules, 2013, 46, 3850-3860.	4.8	45
35	Supramolecular Functionalization of Single-Walled Carbon Nanotubes with Conjugated Polyelectrolytes and Their Patterning on Surfaces. Macromolecules, 2008, 41, 9869-9874.	4.8	44
36	Supramolecular Organogels Prepared from Pillar[5]arene-Functionalized Conjugated Polymers. Macromolecules, 2017, 50, 9144-9150.	4.8	44

#	Article	IF	CITATIONS
37	Oxidation of Fe Nanoparticles Embedded in Single-Walled Carbon Nanotubes by Exposure to a Bright Flash of White Light. Nano Letters, 2002, 2, 1277-1280.	9.1	42
38	A Study of the Dynamics of the Branch Ends of a Series of Pyrene-Labeled Dendrimers Based on Pyrene Excimer Formation. Journal of Physical Chemistry B, 2010, 114, 10254-10265.	2.6	42
39	Polymer Grafting to Singleâ€Walled Carbon Nanotubes: Effect of Chain Length on Solubility, Graft Density and Mechanical Properties of Macroscopic Structures. Small, 2013, 9, 552-560.	10.0	42
40	Scalable Synthesis of Strained Cyclooctyne Derivatives. Synthesis, 2014, 46, 669-677.	2.3	41
41	Water-soluble SWCNTs from sulfonation of nanotube-bound polystyrene. Carbon, 2007, 45, 984-990.	10.3	40
42	Interactions of carbon nanotubes with pyreneâ€functionalized linearâ€dendritic hybrid polymers. Journal of Polymer Science Part A, 2010, 48, 1016-1028.	2.3	40
43	Supramolecular Functionalization of Single-Walled Carbon Nanotubes (SWNTs) with a Photoisomerizable Conjugated Polymer. Macromolecules, 2012, 45, 5045-5050.	4.8	40
44	Postsynthetic Modification of a Covalent Organic Framework Achieved via Strain-Promoted Cycloaddition. Journal of the American Chemical Society, 2021, 143, 649-656.	13.7	40
45	Protein Resistance of Surfaces Prepared by Chemisorption of Monothiolated Poly(ethylene glycol) to Gold and Dendronization with Aliphatic Polyester Dendrons: Effect of Hydrophilic Dendrons. Macromolecules, 2008, 41, 2567-2576.	4.8	39
46	Synthesis and Electrophoretic Deposition of Single-Walled Carbon Nanotube Complexes with a Conjugated Polyelectrolyte. Chemistry of Materials, 2010, 22, 2741-2749.	6.7	39
47	Supramolecular complexes of single walled carbon nanotubes with conjugated polymers. Polymer Chemistry, 2011, 2, 411-416.	3.9	38
48	Supramolecular Functionalization of Single-Walled Carbon Nanotubes (SWNTs) with Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyrrole (DTP) Containing Conjugated Polymers. Macromolecules, 2011, 44, 9138-9145.	4.8	38
49	Influence of Polymer Electronics on Selective Dispersion of Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2016, 22, 14560-14566.	3.3	37
50	Thermally Induced Phase Transition of Carborane-Functionalized Aliphatic Polyester Dendrimers in Aqueous Media. Langmuir, 2006, 22, 5251-5255.	3.5	36
51	Light harvesting and energy transfer within coumarin-labeled polymers. Journal of Polymer Science Part A, 2001, 39, 1366-1373.	2.3	35
52	Effect of Induction on the Dispersion of Semiconducting and Metallic Single-Walled Carbon Nanotubes Using Conjugated Polymers. Macromolecules, 2015, 48, 5155-5161.	4.8	35
53	A Survey of Strainâ€Promoted Azide–Alkyne Cycloaddition in Polymer Chemistry. Chemistry - A European Journal, 2021, 27, 5057-5073.	3.3	34
54	Covalent Functionalization of Single-Walled Carbon Nanotubes with Thermoresponsive Core Cross-Linked Polymeric Micelles. Macromolecules, 2012, 45, 4698-4706.	4.8	33

Alex Adronov

#	Article	IF	CITATIONS
55	Reproducible Dendronized PEG Hydrogels via SPAAC Cross-Linking. Biomacromolecules, 2017, 18, 4054-4059.	5.4	32
56	Intermolecular Coupling in Nanometric Domains of Light-Harvesting Dendrimer Films Studied by Photoluminescence Near-Field Scanning Optical Microscopy (PL NSOM). Journal of the American Chemical Society, 2003, 125, 536-540.	13.7	31
57	Pluronics as crosslinking agents for collagen: novel amphiphilic hydrogels. Polymer International, 2011, 60, 458-465.	3.1	30
58	The effect of molecular weight on the supramolecular interaction between a conjugated polymer and single-walled carbon nanotubes. Polymer Chemistry, 2011, 2, 1404.	3.9	29
59	Click Functionalization of a Dibenzocyclooctyneâ€Containing Conjugated Polyimine. Angewandte Chemie - International Edition, 2016, 55, 945-949.	13.8	28
60	Polycarbazoleâ€Sorted Semiconducting Singleâ€Walled Carbon Nanotubes for Incorporation into Organic Thin Film Transistors. Advanced Electronic Materials, 2019, 5, 1800539.	5.1	28
61	The effect of molecular weight on the separation of semiconducting singleâ€walled carbon nanotubes using poly(2,7â€carbazole)s. Journal of Polymer Science Part A, 2015, 53, 2510-2516.	2.3	27
62	Effect of polymer chain length on the solubility of polystyrene grafted singleâ€walled carbon nanotubes in tetrahydrofuran. Polymer International, 2008, 57, 1007-1011.	3.1	26
63	Functionalization of Single-Walled Carbon Nanotubes via the Piers–Rubinsztajn Reaction. Macromolecules, 2014, 47, 6527-6530.	4.8	25
64	Polyfluorene-Sorted Semiconducting Single-Walled Carbon Nanotubes for Applications in Thin-Film Transistors. Chemistry of Materials, 2019, 31, 2863-2872.	6.7	25
65	Flash Nanoâ€Welding: Investigation and Control of the Photothermal Response of Ultrathin Bismuth Sulfide Nanowire Films. Advanced Materials, 2010, 22, 4395-4400.	21.0	24
66	Quantifying the Presence of Unwanted Fluorescent Species in the Study of Pyrene-Labeled Macromolecules. Journal of Physical Chemistry B, 2011, 115, 9921-9929.	2.6	24
67	Preparation of Carborane-Containing Polymers by Atom Transfer Radical Polymerization. Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15, 469-475.	3.7	23
68	Synthesis, Radiolabeling, and In Vivo Imaging of PEGylated High-Generation Polyester Dendrimers. Biomacromolecules, 2015, 16, 3033-3041.	5.4	23
69	Functionalization of polyfluorene-wrapped carbon nanotubes <i>via</i> copper-mediated azide–alkyne cycloaddition. Polymer Chemistry, 2018, 9, 2873-2879.	3.9	23
70	Decoration of Polyfluorene-Wrapped Carbon Nanotubes via Strain-Promoted Azide–Alkyne Cycloaddition. Macromolecules, 2018, 51, 755-762.	4.8	22
71	Au–carbon nanotube composites from self-reduction of Au3+ upon poly(ethylene imine) functionalized SWNT thin films. Journal of Materials Chemistry, 2008, 18, 1694.	6.7	21
72	Conjugated polyelectrolyte complexes with single-walled carbon nanotubes for amperometric detection of glucose with inherent anti-interference properties. Journal of Materials Chemistry, 2012, 22, 9147.	6.7	21

#	Article	IF	CITATIONS
73	Rapid Synthesis of Functionalized High-Generation Polyester Dendrimers via Strain-Promoted Alkyne–Azide Cycloaddition. Macromolecules, 2017, 50, 7993-8001.	4.8	21
74	Decoration of polyfluorene-wrapped carbon nanotube thin films <i>via</i> strain-promoted azide–alkyne cycloaddition. Polymer Chemistry, 2018, 9, 4460-4467.	3.9	20
75	Excess Polymer in Single-Walled Carbon Nanotube Thin-Film Transistors: Its Removal Prior to Fabrication Is Unnecessary. ACS Nano, 2021, 15, 8252-8266.	14.6	20
76	Growth and Characterization of GaAs Nanowires on Carbon Nanotube Composite Films: Toward Flexible Nanodevices. Nano Letters, 2008, 8, 4075-4080.	9.1	19
77	Selective interactions of a high-molecular-weight polycarbazole with different commercial nanotube samples. Journal of Polymer Science Part A, 2014, 52, 2738-2747.	2.3	19
78	Electrophoretic deposition of poly[3-(3-N,N-diethylaminopropoxy)thiophene] and composite films. Materials Chemistry and Physics, 2011, 125, 210-218.	4.0	18
79	Supramolecular Functionalization of Single-Walled Carbon Nanotubes with Triply Fused Porphyrin Dimers: A Study of Structure–Property Relationships. Chemistry of Materials, 2011, 23, 3188-3194.	6.7	17
80	Studying Pyrene-Labeled Macromolecules with the Model-Free Analysis. Journal of Physical Chemistry B, 2012, 116, 14689-14699.	2.6	17
81	Preparation of synthons for carborane containing macromolecules. Macromolecular Symposia, 2003, 196, 201-211.	0.7	16
82	Electrophoretic deposition of composite films from solutions of conjugated polymers and their supramolecular complexes with carbon nanotubes. Materials Letters, 2012, 67, 248-251.	2.6	16
83	Highly efficient divergent synthesis of dendrimers via metalâ€free "click―chemistry. Journal of Polymer Science Part A, 2013, 51, 1272-1277.	2.3	16
84	Silicone-modified graphene oxide fillers via the Piers-Rubinsztajn reaction. Journal of Polymer Science Part A, 2016, 54, 2379-2385.	2.3	16
85	Transparent, stretchable, and conductive SWNT films using supramolecular functionalization and layer-by-layer self-assembly. RSC Advances, 2016, 6, 29254-29263.	3.6	15
86	Selective dispersion of single-walled carbon nanotubes with electron-rich fluorene-based copolymers. RSC Advances, 2016, 6, 25733-25740.	3.6	15
87	Reactive, Aqueous-Dispersible Polyfluorene-Wrapped Carbon Nanotubes Modulated with an Acidochromic Switch via Azide–Alkyne Cycloaddition. ACS Applied Polymer Materials, 2019, 1, 797-803.	4.4	15
88	Visible Light-Mediated Photoclick Functionalization of a Conjugated Polymer Backbone. Macromolecules, 2020, 53, 1760-1766.	4.8	15
89	Clickâ€Functionalization of a Poly(Tetrazineâ€coâ€Fluorene)â€Conjugated Polymer with a Series of <i>trans</i> â€Cyclooctene Derivatives. Angewandte Chemie - International Edition, 2021, 60, 2980-2986.	13.8	15
90	Phase separation of polymerâ€functionalized SWNTs within a PMMA/polystyrene blend. Journal of Polymer Science Part A, 2009, 47, 450-458.	2.3	14

#	Article	IF	CITATIONS
91	Pillar[5]arene-Decorated Single-Walled Carbon Nanotubes. ACS Omega, 2018, 3, 13935-13943.	3.5	14
92	Synthesis of Conjugated Polymers Containing DIBAC-Derived Triazole Monomers. Macromolecules, 2013, 46, 9593-9598.	4.8	13
93	Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes. Macromolecules, 2017, 50, 8002-8009.	4.8	13
94	Enrichment of Metallic Carbon Nanotubes Using a Two-Polymer Extraction Method. ACS Omega, 2018, 3, 16238-16245.	3.5	13
95	^{99m} Tc-Functionalized Single-Walled Carbon Nanotubes for Bone Targeting. ACS Applied Nano Materials, 2020, 3, 11819-11824.	5.0	13
96	Quantitative Characterization of the Molecular Dimensions of Flexible Dendritic Macromolecules in Solution by Pyrene Excimer Fluorescence. Macromolecules, 2018, 51, 1586-1590.	4.8	12
97	Strain-Promoted Azide-Alkyne Cycloaddition-Mediated Step-Growth Polymerization. Macromolecules, 2019, 52, 7183-7187.	4.8	12
98	Supramolecular interactions of conjugated Zn - and protonated porphyrin polymer with carbon nanotubes. Journal of Porphyrins and Phthalocyanines, 2007, 11, 198-204.	0.8	11
99	Effect of spacer chemistry on the formation and properties of linear reversible polymers. Journal of Polymer Science Part A, 2013, 51, 5056-5066.	2.3	11
100	Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing. Nanotechnology, 2015, 26, 395301.	2.6	11
101	Supramolecular interactions of fluorene-based copolymers containing 3,4-propylenedioxythiophene and phenazine units with SWNTs. Polymer Chemistry, 2016, 7, 5241-5248.	3.9	11
102	Effect of Singleâ€walled Carbon Nanotube (SWCNT) Composition on Polyfluoreneâ€Based SWCNT Dispersion Selectivity. Chemistry - A European Journal, 2018, 24, 9799-9806.	3.3	11
103	Functionalization of Single-Walled Carbon Nanotubes with Poly(methyl methacrylate) by Emulsion Polymerization. Journal of Physical Chemistry C, 2010, 114, 16242-16249.	3.1	10
104	Hybrid GaAs-Nanowire–Carbon-Nanotube Flexible Photovoltaics. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1070-1077.	2.9	10
105	"Click―generation of a conjugated polymer library for SWNT dispersion. Journal of Polymer Science Part A, 2018, 56, 2053-2058.	2.3	10
106	Dispersion of single-walled carbon nanotubes into aqueous solutions using Poh's cyclotetrachromo-tropylene (CTCT). RSC Advances, 2014, 4, 31614-31617.	3.6	9
107	Direct Measure of the Local Concentration of Pyrenyl Groups in Pyrene-Labeled Dendrons Derived from the Rate of Fluorescence Collisional Quenching. Polymers, 2020, 12, 2919.	4.5	9
108	High Performance Organic Electronic Devices Based on a Green Hybrid Dielectric. Advanced Electronic Materials, 2021, 7, 2100700.	5.1	9

#	Article	IF	CITATIONS
109	Synthesis of Polyester Dendritic Scaffolds for Biomedical Applications. Macromolecular Bioscience, 2016, 16, 1475-1484.	4.1	7
110	Click Functionalization of a Dibenzocyclooctyneâ€Containing Conjugated Polyimine. Angewandte Chemie, 2016, 128, 957-961.	2.0	7
111	Dispersion of singleâ€walled carbon nanotubes using nucleobaseâ€containing poly(acrylamide) polymers. Journal of Polymer Science Part A, 2017, 55, 2611-2617.	2.3	7
112	Stretchable and Resilient Conductive Films on Polydimethylsiloxane from Reactive Polymer-Single-Walled Carbon Nanotube Complexes for Wearable Electronics. ACS Applied Nano Materials, 2019, 2, 4968-4973.	5.0	7
113	Anthanthrene-based conjugated polymers for the dispersion of single-walled carbon nanotubes. Polymer Chemistry, 2019, 10, 6440-6446.	3.9	7
114	Preparation of stimulusâ€responsive, polyfluoreneâ€wrapped carbon nanotubes via palladium cross coupling. Journal of Polymer Science Part A, 2018, 56, 2723-2729.	2.3	6
115	Bulk dispersion of singleâ€walled carbon nanotubes in silicones using diblock copolymers. Journal of Polymer Science Part A, 2015, 53, 265-273.	2.3	5
116	Ï€-Conjugated polymers with pendant coumarins: design, synthesis, characterization, and interactions with carbon nanotubes. Canadian Journal of Chemistry, 2016, 94, 759-768.	1.1	5
117	Highly Efficient Multigram Synthesis of Dibenzoazacyclooctyne (DBCO) without Chromatography. Organic Process Research and Development, 2019, 23, 2740-2745.	2.7	5
118	Globular Polymer Grafts Require a Critical Size for Efficient Molecular Sieving of Enzyme Substrates. Angewandte Chemie - International Edition, 2019, 58, 8448-8453.	13.8	5
119	Organic Thin Film Transistors: Polycarbazoleâ€Sorted Semiconducting Singleâ€Walled Carbon Nanotubes for Incorporation into Organic Thin Film Transistors (Adv. Electron. Mater. 1/2019). Advanced Electronic Materials, 2019, 5, 1970002.	5.1	5
120	Synthesis and Characterization of Carborane Functionalized Dendronized Polymers as Potential Boron Neutron Capture Therapy Agents. ACS Symposium Series, 2008, , 238-249.	0.5	4
121	Preparation and Properties of a Hydrolytically Stable Cyclooctyne-Containing Polymer. Synlett, 2018, 29, 2535-2541.	1.8	4
122	Globular Polymer Grafts Require a Critical Size for Efficient Molecular Sieving of Enzyme Substrates. Angewandte Chemie, 2019, 131, 8536-8541.	2.0	4
123	Noncovalent functionalization of boron nitride nanotubes using poly(2,7â€carbazole)s. Journal of Polymer Science, 2020, 58, 1889-1902.	3.8	4
124	Effect of carbon nanotube incorporation into polythiophene-fullerene-based organic solar cells. Canadian Journal of Chemistry, 2014, 92, 68-75.	1.1	3
125	Lightâ€driven atom transfer radical polymerization on supramolecular complexes of conjugated polymers and singleâ€walled carbon nanotubes. Journal of Polymer Science Part A, 2019, 57, 2015-2020.	2.3	3
126	UVâ€light mediated decomposition of a polyester for enrichment and release of semiconducting carbon nanotubes. Journal of Polymer Science, 2020, 58, 1965-1972.	3.8	3

#	Article	IF	CITATIONS
127	Clickâ€Functionalization of a Poly(Tetrazineâ€coâ€Fluorene)â€Conjugated Polymer with a Series of trans â€Cyclooctene Derivatives. Angewandte Chemie, 2021, 133, 3017-3023.	2.0	3
128	Neopentyl Esters as Robust Linkers for Introducing Functionality to Bis-MPA Dendrimers. Macromolecules, 2022, 55, 270-275.	4.8	2
129	Influence of Polymer Electronics on Selective Dispersion of Single-Walled Carbon Nanotubes. Chemistry - A European Journal, 2016, 22, 14413-14413.	3.3	1
130	Frontispiece: Effect of Singleâ€walled Carbon Nanotube (SWCNT) Composition on Polyfluoreneâ€Based SWCNT Dispersion Selectivity. Chemistry - A European Journal, 2018, 24, .	3.3	1
131	Strainâ€promoted azideâ€alkyne cycloaddition polymerization as a route toward tailored functional polymers. Journal of Polymer Science, 2021, 59, 29-33.	3.8	1
132	Growth and Characterization of p-n Junction Core-Shell GaAs Nanowires on Carbon Nanotube Composite Films. Materials Research Society Symposia Proceedings, 2008, 1144, 1.	0.1	0
133	Innentitelbild: Clickâ€Functionalization of a Poly(Tetrazineâ€coâ€Fluorene)â€Conjugated Polymer with a Series of <i>trans</i> yclooctene Derivatives (Angew. Chem. 6/2021). Angewandte Chemie, 2021, 133, 2742-2742.	2.0	Ο
134	Frontispiece: A Survey of Strainâ€Promoted Azide–Alkyne Cycloaddition in Polymer Chemistry. Chemistry - A European Journal, 2021, 27, .	3.3	0