Juan V Alegre-Requena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2763398/publications.pdf

Version: 2024-02-01

471061 476904 1,127 36 17 29 citations h-index g-index papers 42 42 42 1340 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Homologation of Electron-Rich Benzyl Bromide Derivatives via Diazo C–C Bond Insertion. Journal of the American Chemical Society, 2022, 144, 86-92.	6.6	13
2	Mechanistic Studies Yield Improved Protocols for Base-Catalyzed Anti-Markovnikov Alcohol Addition Reactions. Journal of the American Chemical Society, 2022, 144, 9586-9596.	6.6	6
3	Asymmetric Total Synthesis and Determination of the Absolute Configuration of (+)-Srilankenyne via Sequence-Sensitive Halogenations Guided by Conformational Analysis. Organic Letters, 2021, 23, 1321-1326.	2.4	5
4	Phosphorus-mediated sp2–sp3 couplings for C–H fluoroalkylation of azines. Nature, 2021, 594, 217-222.	13.7	84
5	Unconventional Reactivity of Ethynylbenziodoxolone Reagents and Thiols: Scope and Mechanism. Chemistry - A European Journal, 2020, 26, 2386-2394.	1.7	28
6	Selfâ€Assembly of Hollow Organic Nanotubes Driven by Arene Regioisomerism. ChemPlusChem, 2020, 85, 2372-2375.	1.3	4
7	Visibleâ€Lightâ€Mediated Heterocycle Functionalization via Geometrically Interrupted [2+2] Cycloaddition. Angewandte Chemie - International Edition, 2020, 59, 23020-23024.	7.2	29
8	Visibleâ€Lightâ€Mediated Heterocycle Functionalization via Geometrically Interrupted [2+2] Cycloaddition. Angewandte Chemie, 2020, 132, 23220-23224.	1.6	5
9	Fungal-derived brevianamide assembly by a stereoselective semipinacolase. Nature Catalysis, 2020, 3, 497-506.	16.1	47
10	Selective Halogenation of Pyridines Using Designed Phosphine Reagents. Journal of the American Chemical Society, 2020, 142, 11295-11305.	6.6	39
11	Sulfonamide as amide isostere for fine-tuning the gelation properties of physical gels. RSC Advances, 2020, 10, 11481-11492.	1.7	4
12	Simple iodoalkyne-based organocatalysts for the activation of carbonyl compounds. Organic and Biomolecular Chemistry, 2020, 18, 1594-1601.	1.5	19
13	Asymmetric Organocatalyzed Azaâ€Henry Reaction of Hydrazones: Experimental and Computational Studies. Chemistry - A European Journal, 2020, 26, 5469-5478.	1.7	7
14	A Pyridine–Pyridine Cross oupling Reaction via Dearomatized Radical Intermediates. Angewandte Chemie - International Edition, 2019, 58, 14882-14886.	7.2	61
15	A Pyridine–Pyridine Cross oupling Reaction via Dearomatized Radical Intermediates. Angewandte Chemie, 2019, 131, 15024-15028.	1.6	10
16	Understanding hydrogelation processes through molecular dynamics. Journal of Materials Chemistry B, 2019, 7, 1652-1673.	2.9	17
17	Proline bulky substituents consecutively act as steric hindrances and directing groups in a Michael/Conia-ene cascade reaction under synergistic catalysis. Chemical Science, 2019, 10, 4107-4115.	3.7	28
18	Data-mining the diaryl(thio)urea conformational landscape: Understanding the contrasting behavior of ureas and thioureas with quantum chemistry. Tetrahedron, 2019, 75, 697-702.	1.0	20

#	Article	IF	CITATIONS
19	Organocatalyzed Enantioselective Aldol and Henry Reactions Starting from Benzylic Alcohols. Advanced Synthesis and Catalysis, 2018, 360, 124-129.	2.1	9
20	Heterobiaryl synthesis by contractive C–C coupling via P(V) intermediates. Science, 2018, 362, 799-804.	6.0	145
21	Non-enzyme entrapping biohydrogels in catalysis. Tetrahedron Letters, 2018, 59, 3293-3306.	0.7	8
22	Synthesis and supramolecular self-assembly of glutamic acid-based squaramides. Beilstein Journal of Organic Chemistry, 2018, 14, 2065-2073.	1.3	6
23	Optimizing the Accuracy and Computational Cost in Theoretical Squaramide Catalysis: The Henry Reaction. Chemistry - A European Journal, 2017, 23, 15336-15347.	1.7	18
24	"Push–Pull π+/π–―(PPππ) Systems in Catalysis. ACS Catalysis, 2017, 7, 6430-6439.	5.5	24
25	Frontispiece: Optimizing the Accuracy and Computational Cost in Theoretical Squaramide Catalysis: The Henry Reaction. Chemistry - A European Journal, 2017, 23, .	1.7	0
26	Trifunctional Squaramide Catalyst for Efficient Enantioselective Henry Reaction Activation. Advanced Synthesis and Catalysis, 2016, 358, 1801-1809.	2.1	41
27	Synthesis of luminescent squaramide monoesters: cytotoxicity and cell imaging studies in HeLa cells. RSC Advances, 2016, 6, 14171-14177.	1.7	21
28	Self-assembled fibrillar networks of a multifaceted chiral squaramide: supramolecular multistimuli-responsive alcogels. Soft Matter, 2016, 12, 4361-4374.	1.2	32
29	Regulatory parameters of self-healing alginate hydrogel networks prepared via mussel-inspired dynamic chemistry. New Journal of Chemistry, 2016, 40, 8493-8501.	1.4	31
30	Metal–organic frameworks (MOFs) bring new life to hydrogen-bonding organocatalysts in confined spaces. CrystEngComm, 2016, 18, 3985-3995.	1.3	54
31	Squaramides with cytotoxic activity against human gastric carcinoma cells HGC-27: synthesis and mechanism of action. MedChemComm, 2016, 7, 550-561.	3.5	14
32	One-pot synthesis of unsymmetrical squaramides. RSC Advances, 2015, 5, 33450-33462.	1.7	20
33	Guanidine Motif in Biologically Active Peptides. Australian Journal of Chemistry, 2014, 67, 965.	0.5	6
34	Squaramides, Discovering a New Crucial Scaffold. Synlett, 2014, 25, 298-299.	1.0	12
35	Organocatalytic enantioselective hydrophosphonylation of aldehydes. Organic and Biomolecular Chemistry, 2014, 12, 1258-1264.	1.5	47
36	GoodVibes: automated thermochemistry for heterogeneous computational chemistry data. F1000Research, 0, 9, 291.	0.8	212