## Piotr Setny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2763118/publications.pdf Version: 2024-02-01



DIOTO SETNIV

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Membrane-Bound Configuration and Lipid Perturbing Effects of Hemagglutinin Subunit 2 N-Terminus<br>Investigated by Computer Simulations. Frontiers in Molecular Biosciences, 2022, 9, 826366.                             | 3.5 | 2         |
| 2  | Granger Causality Analysis of Chignolin Folding. Journal of Chemical Theory and Computation, 2022, 18, 1936-1944.                                                                                                         | 5.3 | 5         |
| 3  | Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity.<br>International Journal of Molecular Sciences, 2021, 22, 5301.                                                         | 4.1 | 5         |
| 4  | Entropyâ€based distance cutoff for protein internal contact networks. Proteins: Structure, Function<br>and Bioinformatics, 2021, 89, 1333-1339.                                                                           | 2.6 | 2         |
| 5  | Conserved internal hydration motifs in protein kinases. Proteins: Structure, Function and<br>Bioinformatics, 2020, 88, 1578-1591.                                                                                         | 2.6 | 6         |
| 6  | GridSolvate: A Web Server for the Prediction of Biomolecular Hydration Properties. Journal of<br>Chemical Information and Modeling, 2020, 60, 5907-5911.                                                                  | 5.4 | 2         |
| 7  | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. PLoS<br>Computational Biology, 2020, 16, e1007904.                                                                           | 3.2 | 13        |
| 8  | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                                        |     | 0         |
| 9  | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                                        |     | 0         |
| 10 | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                                        |     | 0         |
| 11 | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                                        |     | 0         |
| 12 | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                                        |     | 0         |
| 13 | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                                        |     | 0         |
| 14 | Quick temperature-sweep pure-shift NMR: the case of solvent effects in atorvastatin. Physical<br>Chemistry Chemical Physics, 2019, 21, 19209-19215.                                                                       | 2.8 | 10        |
| 15 | Water-mediated conformational preselection mechanism in substrate binding cooperativity to protein<br>kinase A. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>3852-3857. | 7.1 | 17        |
| 16 | Affinity, kinetics, and pathways of anisotropic ligands binding to hydrophobic model pockets. Journal of Chemical Physics, 2018, 149, 094902.                                                                             | 3.0 | 1         |
| 17 | Charged N-terminus of Influenza Fusion Peptide Facilitates Membrane Fusion. International Journal of Molecular Sciences, 2018, 19, 578.                                                                                   | 4.1 | 8         |
| 18 | Explicit Solvent Hydration Benchmark for Proteins with Application to the PBSA Method. Journal of Chemical Theory and Computation, 2017, 13, 2762-2776.                                                                   | 5.3 | 1         |

**PIOTR SETNY** 

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Principles for Tuning Hydrophobic Ligand–Receptor Binding Kinetics. Journal of Chemical Theory and Computation, 2017, 13, 3012-3019.                                                                            | 5.3  | 13        |
| 20 | Three conserved C-terminal residues of influenza fusion peptide alter its behavior at the membrane interface. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 97-105.                             | 2.4  | 16        |
| 21 | Solvent Fluctuations Induce Non-Markovian Kinetics in Hydrophobic Pocket-Ligand Binding. Journal of<br>Physical Chemistry B, 2016, 120, 8127-8136.                                                              | 2.6  | 8         |
| 22 | Hydration in Discrete Water (II): From Neutral to Charged Solutes. Journal of Physical Chemistry B, 2015, 119, 5970-5978.                                                                                       | 2.6  | 6         |
| 23 | Prediction of Water Binding to Protein Hydration Sites with a Discrete, Semiexplicit Solvent Model.<br>Journal of Chemical Theory and Computation, 2015, 11, 5961-5972.                                         | 5.3  | 14        |
| 24 | Solvent fluctuations in hydrophobic cavity–ligand binding kinetics. Proceedings of the National<br>Academy of Sciences of the United States of America, 2013, 110, 1197-1202.                                   | 7.1  | 86        |
| 25 | Protein-DNA docking with a coarse-grained force field. BMC Bioinformatics, 2012, 13, 228.                                                                                                                       | 2.6  | 31        |
| 26 | A coarse-grained force field for Protein–RNA docking. Nucleic Acids Research, 2011, 39, 9118-9129.                                                                                                              | 14.5 | 55        |
| 27 | How Can Hydrophobic Association Be Enthalpy Driven?. Journal of Chemical Theory and Computation, 2010, 6, 2866-2871.                                                                                            | 5.3  | 205       |
| 28 | Hydration in Discrete Water. A Mean Field, Cellular Automata Based Approach to Calculating<br>Hydration Free Energies. Journal of Physical Chemistry B, 2010, 114, 8667-8675.                                   | 2.6  | 18        |
| 29 | Water in Cavityâ^'Ligand Recognition. Journal of the American Chemical Society, 2010, 132, 12091-12097.                                                                                                         | 13.7 | 236       |
| 30 | Interfaces and hydrophobic interactions in receptor-ligand systems: A level-set variational implicit solvent approach. Journal of Chemical Physics, 2009, 131, 144102.                                          | 3.0  | 40        |
| 31 | Search for Novel Aminoglycosides by Combining Fragment-Based Virtual Screening and 3D-QSAR<br>Scoring. Journal of Chemical Information and Modeling, 2009, 49, 390-400.                                         | 5.4  | 26        |
| 32 | Hydrophobic interactions between methane and a nanoscopic pocket: Three dimensional distribution of potential of mean force revealed by computer simulations. Journal of Chemical Physics, 2008, 128, 125105.   | 3.0  | 20        |
| 33 | Water properties and potential of mean force for hydrophobic interactions of methane and nanoscopic pockets studied by computer simulations. Journal of Chemical Physics, 2007, 127, 054505.                    | 3.0  | 25        |
| 34 | Water properties inside nanoscopic hydrophobic pocket studied by computer simulations. Journal of Chemical Physics, 2006, 125, 144717.                                                                          | 3.0  | 35        |
| 35 | Refinement of X-ray data on dual cosubstrate specificity of CK2 kinase by free energy calculations based on molecular dynamics simulation. Proteins: Structure, Function and Bioinformatics, 2004, 58, 511-517. | 2.6  | 6         |