Rene Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2762954/publications.pdf

Version: 2024-02-01

54 papers

2,550 citations

28 h-index 189801 50 g-index

54 all docs

54 docs citations

54 times ranked 4009 citing authors

#	Article	IF	CITATIONS
1	Cancer stem cells and clonal evolution in bone sarcomas. , 2022, , 371-391.		O
2	Proof of concept for the useÂof trained sniffer dogs to detect osteosarcoma. Scientific Reports, 2022, 12, 6911.	1.6	4
3	Addressing Doxorubicin Resistance in Bone Sarcomas Using Novel Drug-Resistant Models. International Journal of Molecular Sciences, 2022, 23, 6425.	1.8	5
4	Nano-Encapsulation of Mithramycin in Transfersomes and Polymeric Micelles for the Treatment of Sarcomas. Journal of Clinical Medicine, 2021, 10, 1358.	1.0	8
5	Cancer Stem Cells as a Source of Drug Resistance in Bone Sarcomas. Journal of Clinical Medicine, 2021, 10, 2621.	1.0	23
6	Mithramycin delivery systems to develop effective therapies in sarcomas. Journal of Nanobiotechnology, 2021, 19, 267.	4.2	11
7	Sarcoma treatment in the era of molecular medicine. EMBO Molecular Medicine, 2020, 12, e11131.	3.3	154
8	GARP promotes the proliferation and therapeutic resistance of bone sarcoma cancer cells through the activation of TGF- \hat{l}^2 . Cell Death and Disease, 2020, 11, 985.	2.7	14
9	Impaired Condensin Complex and Aurora B kinase underlie mitotic and chromosomal defects in hyperdiploid B-cell ALL. Blood, 2020, 136, 313-327.	0.6	16
10	SOX2 Expression and Transcriptional Activity Identifies a Subpopulation of Cancer Stem Cells in Sarcoma with Prognostic Implications. Cancers, 2020, 12, 964.	1.7	21
11	Pyruvate Plays a Main Role in the Antitumoral Selectivity of Cold Atmospheric Plasma in Osteosarcoma. Scientific Reports, 2019, 9, 10681.	1.6	61
12	The SRC Inhibitor Dasatinib Induces Stem Cell-Like Properties in Head and Neck Cancer Cells that are Effectively Counteracted by the Mithralog EC-8042. Journal of Clinical Medicine, 2019, 8, 1157.	1.0	12
13	Sarcoma Stem Cell Heterogeneity. Advances in Experimental Medicine and Biology, 2019, 1123, 95-118.	0.8	41
14	The Novel Role of SOX2 as an Early Predictor of Cancer Risk in Patients with Laryngeal Precancerous Lesions. Cancers, 2019, 11, 286.	1.7	8
15	New Chondrosarcoma Cell Lines with Preserved Stem Cell Properties to Study the Genomic Drift During In Vitro/In Vivo Growth. Journal of Clinical Medicine, 2019, 8, 455.	1.0	18
16	The Differential Impact of SRC Expression on the Prognosis of Patients with Head and Neck Squamous Cell Carcinoma. Cancers, 2019, 11, 1644.	1.7	9
17	The multikinase inhibitor ECâ€70124 synergistically increased the antitumor activity of doxorubicin in sarcomas. International Journal of Cancer, 2019, 145, 254-266.	2.3	12
18	FUS-CHOP Promotes Invasion in Myxoid Liposarcoma through a SRC/FAK/RHO/ROCK-Dependent Pathway. Neoplasia, 2018, 20, 44-56.	2.3	35

#	Article	IF	Citations
19	Distinctive Expression and Amplification of Genes at $11q13$ in Relation to HPV Status with Impact on Survival in Head and Neck Cancer Patients. Journal of Clinical Medicine, 2018, 7, 501.	1.0	15
20	Role of Activator Protein-1 Complex on the Phenotype of Human Osteosarcomas Generated from Mesenchymal Stem Cells. Stem Cells, 2018, 36, 1487-1500.	1.4	11
21	Trabectedin and Campthotecin Synergistically Eliminate Cancer Stem Cells in Cell-of-Origin Sarcoma Models. Neoplasia, 2017, 19, 460-470.	2.3	22
22	Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies. Stem Cells International, 2016, 2016, 1-13.	1.2	164
23	Candidate biomarkers of transformed mesenchymal stromal/stem cells by quantitative proteomics and glycoproteomics. Experimental Hematology, 2016, 44, S86-S87.	0.2	0
24	Aldh1 Expression and Activity Increase During Tumor Evolution in Sarcoma Cancer Stem Cell Populations. Scientific Reports, 2016, 6, 27878.	1.6	38
25	Inhibition of SP1 by the mithramycin analog EC-8042 efficiently targets tumor initiating cells in sarcoma. Oncotarget, 2016, 7, 30935-30950.	0.8	40
26	Bone microenvironment signals in osteosarcoma development. Cellular and Molecular Life Sciences, 2015, 72, 3097-3113.	2.4	147
27	DNA replication stress in CHK1-depleted tumour cells triggers premature (S-phase) mitosis through inappropriate activation of Aurora kinase B. Cell Death and Disease, 2014, 5, e1253-e1253.	2.7	27
28	Bone Environment is Essential for Osteosarcoma Development from Transformed Mesenchymal Stem Cells. Stem Cells, 2014, 32, 1136-1148.	1.4	89
29	Inactivation of p53 in Human Keratinocytes Leads to Squamous Differentiation and Shedding via Replication Stress and Mitotic Slippage. Cell Reports, 2014, 9, 1349-1360.	2.9	48
30	Human Bone Marrow Stromal Cells Lose Immunosuppressive and Anti-inflammatory Properties upon Oncogenic Transformation. Stem Cell Reports, 2014, 3, 606-619.	2.3	33
31	The Globoseries Glycosphingolipid SSEA-4 Is a Marker of Bone Marrow-Derived Clonal Multipotent Stromal Cells In Vitro and In Vivo. Stem Cells and Development, 2013, 22, 1387-1397.	1.1	20
32	The differentiation stage of p53-Rb-deficient bone marrow mesenchymal stem cells imposes the phenotype of in vivo sarcoma development. Oncogene, 2013, 32, 4970-4980.	2.6	79
33	Expression of FUS-CHOP fusion protein in immortalized/transformed human mesenchymal stem cells drives mixoid liposarcoma formation. Stem Cells, 2013, 31, 2061-2072.	1.4	59
34	Modeling sarcomagenesis using multipotent mesenchymal stem cells. Cell Research, 2012, 22, 62-77.	5.7	125
35	Residual Expression of the Reprogramming Factors Prevents Differentiation of iPSC Generated from Human Fibroblasts and Cord Blood CD34+ Progenitors. PLoS ONE, 2012, 7, e35824.	1.1	61
36	Multipotent Mesenchymal Stromal Cells: Clinical Applications and Cancer Modeling. Advances in Experimental Medicine and Biology, 2012, 741, 187-205.	0.8	32

#	Article	IF	Citations
37	Insights into the cellular origin and etiology of the infant pro-B acute lymphoblastic leukemia with MLL-AF4 rearrangement. Leukemia, 2011, 25, 400-410.	3.3	65
38	Enrichment of Human ESC-Derived Multipotent Mesenchymal Stem Cells with Immunosuppressive and Anti-Inflammatory Properties Capable to Protect Against Experimental Inflammatory Bowel Disease. Stem Cells, 2011, 29, 251-262.	1.4	119
39	FUS-CHOP Fusion Protein Expression Coupled to p53 Deficiency Induces Liposarcoma in Mouse but Not in Human Adipose-Derived Mesenchymal Stem/Stromal Cells. Stem Cells, 2011, 29, 179-192.	1.4	57
40	Circulating cancer cells in division in an early breast cancer patient. Annals of Oncology, 2011, 22, 2150-2151.	0.6	7
41	Deficiency in p53 but not Retinoblastoma Induces the Transformation of Mesenchymal Stem Cells <i>In vitro</i> and Initiates Leiomyosarcoma <i>In vivo</i> Cancer Research, 2010, 70, 4185-4194.	0.4	96
42	ATR and Chk1 Suppress a Caspase-3–Dependent Apoptotic Response Following DNA Replication Stress. PLoS Genetics, 2009, 5, e1000324.	1.5	109
43	Loss of p53 Induces Tumorigenesis in p21-Deficient Mesenchymal Stem Cells. Neoplasia, 2009, 11, 397-IN9.	2.3	89
44	Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. Journal of Experimental Medicine, 2009, 206, 3131-3141.	4.2	109
45	Apoptosis induced by replication inhibitors in Chk1-depleted cells is dependent upon the helicase cofactor Cdc45. Cell Death and Differentiation, 2008, 15, 889-898.	5.0	37
46	Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. Journal of Cellular and Molecular Medicine, 2008, 12, 2552-2565.	1.6	129
47	Thymidine Selectively Enhances Growth Suppressive Effects of Camptothecin/Irinotecan in MSI+ Cells and Tumors Containing a Mutation of <i>MRE11</i> . Clinical Cancer Research, 2008, 14, 5476-5483.	3.2	39
48	Isolation and characterization ofnudCfrom mouse macrophages, a gene implicated in the inflammatory response through the regulation of PAF-AH(I) activity. FEBS Letters, 2007, 581, 3057-3062.	1.3	11
49	TNF triggers mitogenic signals in NIH 3T3 cells but induces apoptosis when the cell cycle is blocked. European Cytokine Network, 2007, 18, 172-80.	1.1	5
50	Effect of Vinca alkaloids on ERÎ \pm levels and Estradiol-induced responses in MCF-7 cells. Breast Cancer Research and Treatment, 2006, 98, 81-89.	1.1	11
51	Chk1 and p21 Cooperate to Prevent Apoptosis during DNA Replication Fork Stress. Molecular Biology of the Cell, 2006, 17, 402-412.	0.9	163
52	Polyinosinic acid induces TNF and NO production as well as NF-κB and AP-1 transcriptional activation in the monocytemacrophage cell line RAW 264.7. Inflammation Research, 2005, 54, 328-337.	1.6	31
53	The Mouse Tumor Necrosis Factor Receptor 2 Gene: Genomic Structure and Characterization of the Two Transcripts. Genomics, 1998, 52, 79-89.	1.3	8
54	SOX2 Expression and Transcriptional Activity Identifies a Subpopulation of Cancer Stem Cells in Sarcoma with Prognostic Implications. SSRN Electronic Journal, 0, , .	0.4	3