Pieter Van West

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/2762414/publications.pdf
Version: 2024-02-01

Current practices and emerging possibilities for reducing the spread of oomycete pathogens in
terrestrial and aquatic production systems in the European Union. Fungal Biology Reviews, 2022, 40
19-36.

Can Ulcerative Dermal Necrosis (UDN) in Atlantic salmon be attributed to ultraviolet radiation and secondary Saprolegnia parasitica infections?. Fungal Biology Reviews, 2022, 40, 70-75.

Transcriptome analysis reveals immune pathways underlying resistance in the common carp Cyprinus carpio against the oomycete Aphanomyces invadans. Genomics, 2021, 113, 944-956.

Development of a 3D spheroid cell culture system from fish cell lines for in vitro infection studies: Evaluation with <i>Saprolegnia parasitica<|i〉. Journal of Fish Diseases, 2021, 44, 701-710.

Pathogenicity and Host Range of Pythium kashmirenseâ€"A Soil-Borne Oomycete Recently Discovered in the UK. Journal of Fungi (Basel, Switzerland), 2021, 7, 479.

Evaluation of Potential Transfer of the Pathogen Saprolegnia parasitica between Farmed Salmonids and Wild Fish. Pathogens, 2021, 10, 926.

Phylogenetic and Functional Diversity of Saprolegniales and Fungi Isolated from Temperate Lakes in
$7 \quad$ Northeast Germany. Journal of Fungi (Basel, Switzerland), 2021, 7, 968.
1.5

Transformation systems, gene silencing and gene editing technologies in oomycetes. Fungal Biology
Reviews, 2021, , .

Saprolegnia infection after vaccination in Atlantic salmon is associated with differential expression
of stress and immune genes in the host. Fish and Shellfish Immunology, 2020, 106, 1095-1105.

The chaperone Lhs1 contributes to the virulence of the fish-pathogenic oomycete Aphanomyces invadans. Fungal Biology, 2020, 124, 1024-1031.
1.1

5
10 invadans. Fungal Biology, 2020, 124, 1024-1031.
$11 \quad$ Molecular insights into the mechanisms of susceptibility of Labeo rohita against oomycete
Aphanomyces invadans. Scientific Reports, 2020, 10, 19531.

Morphological, genotypic and metabolomic signatures confirm interfamilial hybridization between
12 the ubiquitous kelps Macrocystis (Arthrothamnaceae) and Lessonia (Lessoniaceae). Scientific Reports,
1.6 2020, 10, 8279.

The influence of depth and season on the benthic communities of a Macrocystis pyrifera forest in the
Falkland Islands. Polar Biology, 2020, 43, 573-586.
0.5

9

14 Biological Concepts for the Control of Aquatic Zoosporic Diseases. Trends in Parasitology, 2019, 35, 571-582.

15 Oomycete-Root Interactions. Rhizosphere Biology, 2019, , 83-103.
$0.4 \quad 7$
<i>Exophiala angulospora<|i> infection in hatcheryâ $€$ reared lumpfish (<i>Cyclopterus lumpus</i>) broodstock. Journal of Fish Diseases, 2019, 42, 335-343.
19 Aphanomyces invadans, the causal agent of Epizootic Ulcerative Syndrome, is a global threat to wild 1.9 and farmed fish. Fungal Biology Reviews, 2018, 32, 118-130.
5.8Pathogens of brown algae: culture studies of $\langle\mathrm{i}\rangle$ Anisolpidium ectocarpii $\langle\mathrm{i}\rangle$ and $\langle\mathrm{i}\rangle \mathrm{A}$. rosenvingei $\langle\mathrm{i}\rangle$23 reveal that the Anisolpidiales are uniflagellated oomycetes. European Journal of Phycology, 2017, 52,
25 Isolation of fungal pathogens from eggs of the endangered sea turtle species <i>Chelonia mydas < /i> in$0.4 \quad 23$
Ascension Island. Journal of the Marine Biological Association of the United Kingdom, 2017, 97, 661-667.
26 NmPin from the marine thaumarchaeote Nitrosopumilus maritimus is an active membrane associatedprolyl isomerase. BMC Biology, 2016, 14, 53.
27 Emerging oomycete threats to plants and animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150459.
Infection of the brown alga <scp><i>E</i><|scp><i>ctocarpus siliculosus</i> by the oomycete <scp><i>E</i><|scp><i> urychasma dicksonii< i\rangle induces oxidative stress and halogen metabolism. 2.8 30
Plant, Cell and Environment, 2016, 39, 259-271.
29 New records and observations of macroalgae and associated pathogens from the Falkland Islands, 0.6 13
30 Nonagonal cadherins: A new protein family found within the Stramenopiles. Gene, 2016, 593, 64-75.1.05
31 Arctic marine phytobenthos of northern Baffin Island. Journal of Phycology, 2016, 52, 532-549.1.031
Mobilization of Pollutant-Degrading Bacteria by Eukaryotic Zoospores. Environmental Science \& Technology, 2016, 50, 7633-7640.

Development of eukaryotic zoospores within polycyclic aromatic hydrocarbon (PAH)-polluted
Environment, 2015, 511, 767-776.

Seaweed biodiversity in the south-western Antarctic Peninsula: surveying macroalgal community
41 composition in the Adelaide Island/Marguerite Bay region over a 35-year time span. Polar Biology, 2014,
$0.5 \quad 37$
37, 1607-1619.

Reprint of: Saprolegnia strains isolated from river insects and amphipods are broad spectrum
1.1 pathogens. Fungal Biology, 2014, 118, 579-590.

Functional characterization of a tyrosinase gene from the oomycete Saprolegnia parasitica by RNAi
silencing. Fungal Biology, 2014, 118, 621-629.
1.1

12

44 The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems
and the aquaculture industry. Fungal Biology Reviews, 2013, 27, 33-42.
1.9

121

$45 \quad$| Saprolegnia strains isolated from river insects and amphipods are broad spectrum pathogens. Fungal |
| :--- |
| Biology, 2013, 117, 752-763. |

1.129

A family of small tyrosine rich proteins is essential for oogonial and oospore cell wall development
of the mycoparasitic oomycete Pythium oligandrum. Fungal Biology, 2013, 117, 163-172.
14

Managing scientific diving operations in a remote location: the Canadian high Arctic. Diving and
$0.2 \quad 5$
64

Plasmodium falciparum and Hyaloperonospora parasitica effector translocation motifs are
functional in Phytophthora infestans. Microbiology (United Kingdom), 2008, 154, 3743-3751.
0.7

94
$65 \quad$ A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature, 2007,
$450,115-118$.

Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challenges for an old problem. The Mycologist, 2006, 20, 99-104.
0.5

277

A method for double-stranded RNA-mediated transient gene silencing inPhytophthora infestans.
2.0

108
$67 \quad \begin{aligned} & \text { A method for double-stranded RNA-mediated tr } \\ & \text { Molecular Plant Pathology, 2005, 6, 153-163. }\end{aligned}$

Expressed sequence tags from the oomycete fish pathogen Saprolegnia parasitica reveal putative
1.3

90 virulence factors. BMC Microbiology, 2005, 5, 46.

```
Advances in research on oomycete root pathogens. Physiological and Molecular Plant Pathology,
\(69 \quad\) Advances in researc
```

1.3

125

EST Mining and Functional Expression Assays Identify Extracellular Effector Proteins From the Plant
Pathogen Phytophthora. Genome Research, 2003, 13, 1675-1685.
2.4

333

TheipiO Gene ofPhytophthora infestansls Highly Expressed in Invading Hyphae during Infection. Fungal

